Regional climate change impacts on air quality in high resolution

Tomas Halenka, Peter Huszar*, Michal Belda, Eleni Katragkou, I. Tegoulias, Prodromos Zanis, Dimitris Melas, and Bernd Krueger

*peter.huszar@mff.cuni.cz
Goals

• To establish and validate a RCM/CTM modeling system for investigating the climate-chemistry interactions using models RegCM3 and CAMx.

• To assess the climate change impact on air quality in high resolution

• Attribute AQ changes to change of individual meteorological parameters and processes
Models involved

RegCM

- Regional Climate Model: Giorgi et al. (1993a,b), Giorgi et al. (1999), and Pal et al. (2005).
- Being developed in ICTP, http://users.ictp.it/~pubregcm/RegCM3
- MM5 dynamical core
- 23 vertical σ-levels reaching up to 70hPa, with time step of 30 s,
- **10 km resolution.**

CAMx

- Eulerian chemical transport model (ENVIRO Corp.)
- http://www.camx.com
- Meteorology from RegCM
- Chemistry schemes: SAPRC99 and CB-IV+Aerosols
- IC – clean conditions

- BC – provided by 50km x 50km runs carried out by Aristoteles University of Thesaloniki
- Emissions – EMEP (Europe, 50km) and POP (CE, 5km) emissions for y2000, biogenic emissions of Isoprene and Monoterpenes following Guenther’s approach.

RegCM2CAMx

- **Coupling interface** – converts RegCM meteorology to CAMx input fields.
- Developed by Charles University
Model’s grid

182 x 162, 10 km resolution

Boundary conditions from 50 km domain covering most of the Europe - CTM runs by Aristoteles University of Thessaloniki.
• Four decadal CTM runs: 2 for present situation and 2 for near and far future conditions (3 decades involved).

Meteorology – dynamically downscaled from ERA40/ECHAM via RegCM 25 km x 25 km and RegCM 10 km x 10 km runs

ERA40

ECHAM

PRESENT

CONTROL

Emissions (EMEP+POP)

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

DEK2

“near future”

DEK3

“far future”
Model validation

- The 1991-2000 CAMx run driven by downscaled ERA40 meteorology served for model validation.
Model validation

- The 1991-2000 CAMx run driven by downscaled ERA40 meteorology served for model validation.
Climate change impact on air quality

Present (reference) SO2 exceedances

Future SO2 exceedances
MEASURE\text{future} - MEASURE\text{present}

- **Measures:**
 - Annual/Seasonal Averages (ozone)
 - AOTs (Accumulated concentration Over a Threshold) for ozone
 - Exceedances according to EC Directives (hourly/daily averages, see below)

EU air quality thresholds for different averaging intervals

<table>
<thead>
<tr>
<th>Averaging interval</th>
<th>O\textsubscript{3} Threshold (µg/m3)</th>
<th>NO\textsubscript{2} Percentile Threshold (µg/m3)</th>
<th>PM\textsubscript{10} Percentile Threshold (µg/m3)</th>
<th>SO\textsubscript{2} Percentile Threshold (µg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hourly</td>
<td>--</td>
<td>--</td>
<td>99.79</td>
<td>350</td>
</tr>
<tr>
<td>Daily</td>
<td>93.15</td>
<td>200</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Annual</td>
<td>--</td>
<td>40</td>
<td>50</td>
<td>125</td>
</tr>
</tbody>
</table>

Left: threshold value in µg/m3, right: percentile value corresponding to the number of allowed exceedances of the AQ limit value.
Impact on future concentrations
Average ozone

2041-2050

2091-2100

Winter

Summer

Peter Huszar, Charles University, Prague, Czech Republic
Impact on future concentrations
AOT40 for crops/forests (absolute change)

2041-2050

Crops

Forests

2091-2100

Peter Huszar, Charles University, Prague, Czech Republic
Impact on future concentrations
AOT40 for crops/forests (relative change)

Crops

Forests

Peter Huszar, Charles University, Prague, Czech Republic
Impact on future concentrations
Ozone exceedances/maximum values

Number of days 8-hour O3 > 120 microg/m³ DEK2–CONTROL

Maximum O3 DEK2–CONTROL [ppbv]

Number of days 8-hour O3 > 120 microg/m³ DEK3–CONTROL

Maximum O3 DEK3–CONTROL [ppbv]
Impact on future concentrations
Particulate matter

Peter Huszar, Charles University, Prague, Czech Republic
Impact on future concentrations
Sulfur dioxide hourly/daily exceedances

2041-2050

Num. hours $\text{SO}_2 > 350 \text{ ug/m}^3$ DEK2-CONTROL

2091-2100

Num. hours $\text{SO}_2 > 350 \text{ ug/m}^3$ DEK3-CONTROL

$N_{1h>350}$

$N_{1d>125}$

Peter Huszar, Charles University, Prague, Czech Republic

HARMO13 – Paris - France 1-4 June 2010
Impact on future concentrations
PM10 daily exceedances

2041-2050

2091-2100

N_{1d>50}
The future air quality shift can be attributed to change of which meteorological parameters?

Expectations:

Ozone change: temperature, solar radiation (cloud optical depth)

Sulfur dioxide exceedances: change in horizontal/vertical mixing, wind speed/direction, PBL height

Particle matter exceedances: change in horizontal/vertical mixing, windspeed, PBL height
Climate change impact on AQ
Temperature at 2 m “future”-”present”

Winter

Summer
Climate change impact on AQ
Incident solar radiation [W/m²] “future”–”present”

Winter

Summer

Peter Huszar, Charles University, Prague, Czech Republic
Climate change impact on AQ
Total precipitation [mm/day] “future”-“present”

Winter

Summer

Peter Huszar, Charles University, Prague, Czech Republic
HARMO13 – Paris - France 1-4 June 2010
Climate change impact on AQ
Ventilation coefficient [m²/s] “future”-”present”

Winter

Autumn

Peter Huszar, Charles University, Prague, Czech Republic
HARMO13 – Paris - France 1-4 June 2010
Climate change impact on AQ
Wind speed [m/s] “future”-”present”

Winter

2041-2050

2091-2100

Autumn
Climate change impact on AQ
Wind components [m/s] “future”-”present”

Peter Huszar, Charles University, Prague, Czech Republic
HARMO13 – Paris - France 1-4 June 2010
Conclusions

- Offline couple of RCM and CTM well captured the climatology of selected gases in the troposphere in the terms of average values. Simulation of extremes is weaker.

- Yearly averages: ozone shows small reduction both in the near and far future decades in CE. During summer, far future, ozone increases in some areas: southern Germany, northern Italy

- AOT for crops increases by the factor of up to 30% in the far future in selected regions, for forests, increase occurs on smaller areas but with the same magnitude

- Future ozone exceedances show to be more frequent (up to 50%) and higher ozone maxima are expected, at some areas, by up to 15 ppbv
Conclusions cont’d

- SO$_2$ - shift of the high polluted spots. Increase of exceedances at some areas in Central Europe.

- PM10/2.5 – average levels decrease in the future, num. days of with exceedance decrease. Not significant increase occurs at many areas.

- Average ozone reductions attributed to lower solar radiation “defeating” temperature increase. Temperature rise is important only in summer far future. AOTs, exceedances and maxima increase due to temperature increase.

- SO$_2$: shift of polluted spots partially due to change of wind pattern, areas of pure increase occur where ventilation(wind speed) is reduced

- PM10: decrease in Romania due to increased ventilation(wind speed), decrease of average values and exceedances around Benelux unexplained so far.
Thank you for your attention
Any question?

Acknowledgement

The work performed under support by projects EC FP6 STREP CECILIA (GOCE 037005), partially supported also by EC FP6 QUANTIFY (GOCE 003893) and in framework of Research Plan of MSMT under No. MSM 0021620860.