# **Comparison of Different Dispersion Modelling Approaches in Complex Terrain**



## Rahela Žabkar<sup>1</sup>, Matic Ivančič<sup>2</sup>, Jože Rakovec<sup>1</sup>, Marko Rus<sup>1</sup>, Rudi Vončina<sup>2</sup>



<sup>1</sup>University of Ljubljana, Faculty of Mathematics and Physics, Chair of Meteorology, Slovenia <sup>2</sup>Electric Power Research Institute of Ljubljana, Slovenia

## ABSTRACT

In the present study we focus on comparison of results of different approaches for passive tracer dispersion modeling in complex terrain. Simulations with three meteorological and dispersion models are performed for selected episodes. Meteorological models included in the study are the diagnostic mass-consistent wind field models and the complete prognostic non-hydrostatic mesoscale model, while lagrangean and eulerian approach are used for modeling the dispersion of pollutants.

Attempts to estimate the average yearly 1h near ground concentrations on the basis of simulations performed for selected characteristic weather-type episodes are also made. This approach may be useful especially when meteorological conditions in simulations performed over longer time period are simulated with a complete non-hydrostatic mesoscale meteorological model.

## **MODELLING SYSTEMS**

Modelling systems used in the study:

- > AUSTAL2000 (VDI, 2000).
- > CALMET & CALPUFF (Scire et al., 2000a).
- > WRF-Chem model (Skamarock et al., 2008; Peckham et al., 2008).

#### **Configuration of models:**



## **ESTIMATION OF YEARLY AVERAGE NEAR GROUND POLUTANT DENSITIES**

#### Methodology consisted of the following steps:

- Classification of large scale weather performed over longer time period (40 years). ERA40 700 hPa wind field, 500 hPa and 925 hPa geopotential were used in this classification procedure (Dittmann et al.).
- Second stage classification for calculating subclusters of large scale weather clusters on the basis of radiosounding observations and near ground meteorological measurements.
- Calculation of weather-type frequencies and determination of most representative (characteristic) cluster member (day with minimum distance from cluster centroid).
- > Model simulations were carried out for every cluster representative. Yearly 1h average concentration fields were calculated as weighted sum of daily average concentration fields for characteristic days.

#### **Evaluation of results:**

- $\succ$  Average yearly 1h near-ground SO<sub>2</sub> concentration field was calculated by simulating dispersion of SO<sub>2</sub> from point source during entire 1-year period (May 2000 – April 2001) by CALMET/CALPUFF modeling system.
- $\succ$  For six different classifications (Table 2) average yearly 1h near-ground SO<sub>2</sub> concentration field was estimated by weighting the characteristic episode concentrations.

#### Table 2: Some characteristics of performed classifications.

|           | Class 1 | Class 2 | Class 3 | Class 4 | Class 5 | Class 6 |
|-----------|---------|---------|---------|---------|---------|---------|
| Number of |         |         |         |         |         |         |
| clusters  | 11      | 13      | 10      | 7       | 15      | 35      |



- Area of interest centered over the Ljubliana basin.
- Horizontal modeling domain with 100x100 points in 300 m resolution.
- 12 vertical levels from 0 to 2500 m altitude.
- Meteorological measurements at two stations and one radiosounding site used for diagnostic wind field calculations.
- Dispersion of passive tracer from the point source placed in Ljubljana basin.

#### Additional in the WRF-Chem model configuration:

- $\geq$  27 additional vertical levels extending up to 50 hPa.
- $\succ$  Three nested domains, the innermost domain cinciding with CALMET/CALPUFF and AUSTAL domain.
- ECMWF analyses used for meteorological initial and lateral boundary conditions.
- Simulations with, and without PBL parameterization.

#### Table 1: Point source characteristics.

| Latitude    | Longitude  | Stack height | Stack diameter |
|-------------|------------|--------------|----------------|
| 46.05833 °N | 14.5495 ⁰E | 100 m        | 6 m            |

| Velocity | Temperature | SO <sub>2</sub> flow |
|----------|-------------|----------------------|

Figure 1: Topography as represented in modelling domain with 100x100 grid points and 300 m resolution.



Figure 2: Areas with dominant fraction of urban land cover category (Ljubljana city) in modelling domain with 300 m resolution.



**Figure 3**: WRF-Chem model domains. D1: 45x45 grid points, 5 km resolution; D2: 81x81, 1 km; D3: 100x100, 300 m. Topography is shown in 5 km resolution.

| First stage     | 700 hPa | 700 hPa | 700 hPa | 925,    | 925 hPa | 925,    |
|-----------------|---------|---------|---------|---------|---------|---------|
| classification  | wind    | wind    | wind    | 500 hPa | C/A*    | 500 hPa |
| based on        | sector  | sector  | sector  | C/A*    |         | C/A*    |
|                 |         |         |         |         |         |         |
| Fields used     | 700 hPa |
| for first stage | U,V     | U,V     | U,V     | U,V;    | U,V;    | U,V;    |
| classification  |         |         |         | 500,925 | 500,925 | 500,925 |
|                 |         |         |         | hPa Z   | hPa Z   | hPa Z;  |
|                 |         |         |         |         |         | TWC     |

\*C - Cyclonic, A - Anticyclonic



.15max 32.00'

**Figure 4**: Yearly average 1h near-ground SO<sub>2</sub> values, calculated from results of CALMET/CALPUFF simulations performed for time period May 2000 – April 2001.

0.45max

0.3max

0.15max



## **COMPARISON OF RESULTS FOR SELECTED DAYS**

Results of simulations performed with different modelling systems were compared for two days: > Winter day: 15 February 2008. Summer day: 3 July 2008.

> Both are anticyclonic situations with relatively weak winds in PBL. Radiosounding observations show subsidence temperature inversion between 900 m and 1200 m a.s.l. for the winter day, and nighttime temperature inversion between 250 m and 500 m a.s.l. for the summer day.



Figure 7: Comparison of ground level 1h daily maxima for experimental runs performed for 15 February 2008. A – AUSTAL2000, B – CALMET/CALPUFF, C – WRF-Chem model.



**Figure 5**: Yearly average 1h near-ground SO<sub>2</sub> values, calculated from CALMET/CALPUFF simulations performed for characteristic days. Legend is relative to the maximum (max) that shown in each of the figure titles.



Figure 6: Scatter plots of the calculated yearly average 1h SO<sub>2</sub> values (in  $\mu$ g/m<sup>3</sup>) from the CALMET/CALPUFF simulation covering 365 days in comparison to values calculated from the weighted sum of characteristic days for six different classifications. Classifications with the first stage clustering based on cyclonic or anticyclonic conditions (Class 4-6) perform better than classifications with first stage clustering based on 700 hPa wind sector (Class 1-3).



Figure 8: Comparison of ground level 1h daily maxima for experimental runs performed for 3 July 2008. A – AUSTAL2000, B – CALMET/CALPUFF, C – WRF-Chem model.



Figure 9: Scatter plot comparing the hourly wind speed values of experiments B and at point source location, separate for winter and summer day.

**Table 3:** Comparison of absolute 1h daily SO<sub>2</sub> maximum concentrations (in  $\mu$ g/m<sup>3</sup>) - regardless the time and the location of occurence.

| nd C |            | AUSTAL | CALMET | WR-CHEM |
|------|------------|--------|--------|---------|
| ely  | Winter day | 85     | 1200   | 565     |
|      | Summer day | 108    | 1639   | 1201    |

**CONTACT:** Rahela Žabkar: *rahela.zabkar@fmf.uni-lj.si*, Matic Ivančič: *matic.ivancic@gmail.com*