

Dispersion parameters in a wind tunnel and in the field:

analysing Thompson's 1991 wind tunnel data for isolated stacks with IFDM and its application to building downwash modelling

Guido Cosemans and Wouter Lefebvre, Flemish Institute for Technological Research - VITO, Mol, Belgium

INTRODUCTION

We want formulae for the ground-level concentrations at short distances from buildings for plumes subject to building downwash.

These concentrations should be accurate enough to allow for reverse modelling.

Steps towards goal

1) Literature: state of art:

Gaussian models: PRIME / OML ... problem: poor performance at near building distance

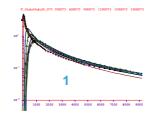
CFD models: Miscam, Envi-met, ... ©: better looking concentration profiles problem: too much computer resources question: scaling with the field

- 2) Do it yourself: Steps:
 - A) identify reference data-sets: Thompson (1991) wind-tunnel
 - B) reproduce concentrations for isolated stacks in wind-tunnel
 - C) compare wind-tunnel dispersion with dispersion in the field (of interest)
 - D) investigate whether a combination of ground-level concentration profiles from isolated stacks can reproduce these of a building down-wash

A: Thompson's (1991) US-EPA Wind-**Tunnel Data**

- Measurements of ground-level centreline concentration profiles for 350 combinations of building shape, stack height and stack location relative to the building
- » Non-buoyant plume
- Neutral atmospheric stability conditions 350 combinations, with approx. 45000 groundlevel concentrations measured

Building types: (Side cube = 150 mm)



Stack heights (mm): 38 150 188 225 300 375 450

Stack location: from 2100 mm upwind of building to 1800 mm downwind

Receptors (distance from stack): closest: from -300 mm till 4000 mm spacing: from 10 mm till 300 mm greatest distance: till 9800 mm

Isolated stacks (without building): 9 profiles

D: Building downwash

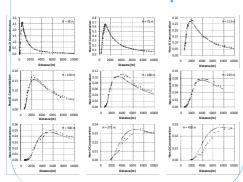
Personal observation in the field. The material of the plume in the wake of the building is distributed chaotically between two heights.

Mathematical approach. The long-term averaged ground-level concentration is the sum of the impact of a number of plumes whose heights and pollutant content are log-normally-type distributed

Basic Formula. (For details: see paper.)

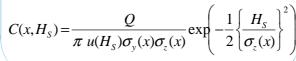
$$C(x_{receptor-S}, 0, 0, H_{S}, H_{building}, X_{S-building}) =$$

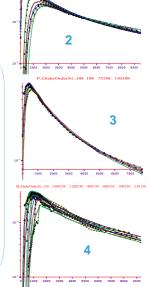
$$\int_{-\infty}^{+\infty} \frac{Q_{zp}}{\pi u(h_{zp})\sigma_{y}(x^{*})\sigma_{z}(x^{*})} \exp\left(-\frac{1}{2}\left\{\frac{h_{zp}}{\sigma_{z}(x^{*})}\right\}^{2}\right) dz$$


Some results (Status at May, 24th) 🙂

Some ground-level concentrations (measured: markers, modelled: broken lines) for the cubical buildina:

- 1) Stack = 75 mm, at different locations downwind the building
- 2) Stack height = building height, at 3 positions on the roof (wind side, middle, downwind side) and at 5 different locations downwind the
- 3) Stack = 188 mm, three positions above roof of
- 4) Stack height = building height, at 6 different upwind positions of the building


B: Reproduction of isolated \odot stack concentration profiles


C: Dispersion parameters for the field (IFDM, Bultynck-Malet) and the wind-tunnel

$\sigma_{y}(x) = a x^{\alpha}$	
$\sigma_z(x) = b \ x^{\beta}$	

Dispersio	rsion parameters σ,		(x)	$\sigma_{z}(x)$		
Coefficient & exponent		а	α	b	β	
wind-	generic	Eq.1	0.796	Eq.2	0.711	
tunnel	h=37	0.441	0.796	0.350	0.711	
	h=450	0.256	0.796	0.532	0.711	
field	slightly stable	0.297	0.796	0.382	0.711	
	neutral	0.418	0.796	0.52	0.711	
a(hs) = a(E) = 0.0001(4.5hs + 500)					(1)	

Implicit scale assumption: 1 mm wind-tunnel = 1 m in the field.

