Smart climatologies for preparation and planning of hazardous release

F. Vandenberghe1, J. Copeland1, T. Warner1, and R. Babarsky2

1) National Center for Atmospheric Research, Boulder CO, USA
2) National Ground Intelligence Center, Charlottesville, VA, USA
Model based climatologies

✔ Provide 4-dimensional fields and maps.
✔ Fill in when observations are missing.
✔ Global climatologies, public or proprietary, available: NCAR/NCAP Reanalysis Project, ERA 40, JMA, MERA, etc.

➢ Too coarse resolution (0.5° to 2.5°, 6-hourly) for certain applications.
Dynamic downscaling

Global scale data mapped to local region while adding small scale variability

Courtesy Cliff Mass, Univ. Washington
Dynamic Downscaling with Regional Models

- Regional model “embedded” within a global model.
 - Global model constrains regional model.
 - Regional model defines small scale features.
 - Information only passed from global model to regional model.
Regional Climatographies by Dynamical Downscaling

- Global reanalysis
- Meteorol. observations
- WRF model

Year 1

Year 2

Year ...

Year N

Analysis
Variability
regimes
CFDDA - Continuous Data Assimilation

CFDDA - Continuous Data Assimilation

Modified WRF/MM5:
\[\frac{dx}{dt} = \ldots + W (x_{\text{obs}} - x_{\text{model}}) \]
where \(x = T, U, V, Q, P1, P2 \ldots \)
\(W \) is weight function
WRF 3.0.1.1, 3 domains: 30/10/3.3km, hourly output
66x66x39 grid points, first 5 levels: 2m, 6m, 10m, 18m, 36m
Physics: Lin et al., PBL: Yonsei University,
Kain Fritsh Cumulus parametrization (D1 & D2 only)
NOAH land surface, RRTM / Dudhia radiation,
Simple diffusion, KM 2D Smagorinsky
Surface stations coverage
Domain 3 (3.3km)

Reporting surface stations at 12z in October 1987-2006 (5% quantile)
Surface Verification Domain 3 at 00z and 12z October 1987-2006

X = obs. Y = model, left = Temperature, right = Humidity
sfc wind analysis fit to obs

Surface Verification Domain 3 at 00z and 12z October 1987-2006
X = obs. Y = model, left = U-wind, right = V-wind

u_wind between 850 & 1050 hPa
bias = 0.2, rms = 2.8, max = 52.0 m/s

v_wind between 850 & 1050 hPa
bias = -0.1, rms = 2.9, max = 32.9 m/s
SOMs classification

46%

1994/10/15 12z

32%

1995/10/01 12z

22%

2001/10/14 12z

SOM analysis of large scale (domain 1) 10-meter wind. Most representative day and frequency of occurrence for the first 3 patterns over 20 years*31 days*24 hourly = 14,880 WRF output files.
SOMs on Domain 3

10-meter wind fine scale (3.3km) wind analysis for the three most representative days of the SOMs large scale classification.
Summary

• Regional model based climatologies offer both spatial and temporal resolution at reasonable accuracy.

• High computing cost (6000 CPU*Hours) and storage (600 Gb).

• SOMs classification can extract statistically representative days without averaging fields.

➢ Next step: T&D climatologies and classification.
T&D climatologies

Global reanalysis
Meteorol. observations → WRF model → SCIPUFF

Year 1

Global reanalysis
Meteorol. observations → WRF model → SCIPUFF

Year 2

....

....

....

Year ...

Global reanalysis
Meteorol. observations → WRF model → SCIPUFF

Year N

Analysis
Variability
Classification