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Air Pollution in the News
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that airports cause
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Acid Deposition

+ Deposition of acidifying pollutants became a concern in the
1970s

+ Acid deposition believed to be damaging lake and forest
ecosystems in Scandinavia
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Acid Deposition
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Acid Deposition

The early models were semi-empirical:
Lagrangian trajectory models, statistical
models for long-term concentrations

= Bolin and Persson, 1975

= Eliassen and Saltbones, 1975
= Fisher, 1975

=« Venkatram et al., 1982



Semi-Empirical Models

= Parameters for chemistry, dry deposition, wet
deposition
= Transport modeled using trajectories or ‘wind roses’
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Issues with Semi-empirical Models

» Difficult to incorporate fundamental
understanding into parameter values
= Chemistry is generally simple

» Transport does not account for wind
shear



Comprehensive Models

s Designed to incorporate processes in
as much detail as possible

s Designed to serve as numerical
surrogates of governing system once it
has been evaluated with observations

» Used to conduct experiments that would
be impossible in the real world



Comprehensive Models - Acid Deposition and

Oxidant Model
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Acid Deposition - Gas Phase Chemistry

50, + OH - HOSO, + O, - 50, + HO,
SO, +H ,0 - H,50,

NO, + OH — HNO,

O,+hv—->0,+0
O+ H,O - 20H



Acid Deposition - Aqueous Phase Chemistry

SO, + H,O < H,0.50,
H,0.50, & HSO; + H”
HSO; + H,O,+ H™ - 5O, +2H" + H,O
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ROIZ Of Hzcz

= Hydrogen peroxide oxidizes SO, in cloud water: wet removal of SO, is more

efficient than that suggested by dissolution of SO,

= Scavenging by rain is limited by the concentration of H,O,

FIGURE 6
FIGURE 3 Reduction in emissions alters wet deposition*

Wet scavenging during oxidant-limited conditions
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= Revealed in long-term concentrations
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Role of Non-precipitating Clouds

Simulation of a 12 day period in 1998 showed that

. Sulfur in rain was estimated well
. Total ambient sulfur estimated well
. Sulfate in air underpredicted

. S0, in air overpredicted

Hypothesis

Oxidation in cloud results in ambient sulfate when
the cloud evaporates



Role of Non-precipitating Clouds - results from Karamchandani and

Venkatram, 1992
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Role of Non-precipitating Clouds - results

Ambient SO, Ambient Sulfate
20 : a1 . 12 T T a T |
w/o non-precip. stratus w/o non-precip. stratus :
1865 ® W non-precip. stratus |- i ® w non-precip. stratus
5 & 10} ) :
_ ®
--..E._ 1o N S g ® pe
(@] (@) g ® [
= = ° *» & ¢
AA b e ® e [ ]
[ C gt i LR g 0 R _
) o) 5 e o¢
S = ° N ®
®© 12 . 1 © ° °
= = ' .00
o 0®
8 .10 8 6_ O ST, g .‘ ............... . .....................
c c ® ®
o o] [ ] ® [
O 8 .......................................................................................................................................... O . : .
o L 2NN I e . A % @ T
R 0 4 ° 5
% P o
_Q 4_ .................................................................................................... _Q 2 ..... . ...................................................................................
O O °
2, ,
0 i 0 i I ] 1 i
0 5 10 15 20 0 2 4 6 8 10 12

ADOM Prediction (ug/m3) ADOM Prediction (pg/m3)



Models are used to estimate the contributions of
pollution sources to visibility reduction

Visibility is reduced by
scattering of light by
aerosols




Results from simulations

» Established culpability of different
sources to acid deposition

Receptor us Canad
Source d
us 70% 70%0
Canada 30% 30%

= Showed the importance of sulfate
formation in non-precipitating clouds



Urban Air Pollution Modeling

Non-uniform surface characteristics
and buildings
Complex flow and turbulent fields

Use flat-terrain models with modifications in
plume spread




St Louis Experiment

. Conducted in 1963-65
. Zinc Cadmium Sulfide particles released close to

the surface

Doses sampled at 30-50 locations on arcs ranging
from 800 m to 16 km from the source along the
estimated plume centerline

- Meteorology measured at three surface stations

and an instrumented TV tower in the middle of
the city

. Resulted in 26 daytime and 16 evening hour-long

experiments



Analysis of Data

- McElroy and Pooler derived horizontal spreads
from arc doses, and vertical spreads from
maximum ground-level concentrations

. They presented these spreads as functions of
stability parameters

Briggs (1973) presented analytical forms that fit
the data

- Used in ISC model as urban dispersion curves



St Louis Model Performance

Briggs Curves
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Current Urban Pollution Problems

Environmental Justice
Freeways through neighborhoods
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Sources Near Residents
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Urban Field Experiments

Tracer studies designed to study dispersion at
scales of meters to kilometers in urban areas.

= CE-CERT parking lot study, April-May 2001

= Dugway Proving Grounds Model Study- July
2001

= Summer and winter Barrio Logan field studies-
August and December 2001

= Wilmington shoreline study- September 2003,
2004

Funded by CEC and ARB to examine
Environmental Justice Issues



Dugway Experiment




CE-CERT Parking Lot




Meteorological Measurements




Sampling Sites

74 sites
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Model Results using Boundary Layer Information and

Initial Spread

r’= 0.64 Fac2= 61% Bias= 1.29
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Model Results -Highway Modelin

Observed NO concentration (ppb)

Observed NO concentration (ppb) at unit 2
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Freeway concentration contributions

Concentrations (ug/ms)
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Simple models work well

BUT..

Simple models for dispersion provide
adequate concentration estimates if mean
wind and turbulence velocities are known

PoInt sources:
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Es'rlmafmg model lnpu’rs from urban rouTme measurements
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Results-Stable Conditions

Stable
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Results-Unstable Conditions
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Dispersion Models

Simpler models are not appropriate for
estimating concentrations within a kilometer
from source when plume is still in the urban
canopy

Need numerical and/or physical models

Turbulent Dispersion

Plume rise
Emissions D Q
Building Effects
N
) \k)




Impact of distributed generators
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Laboratory modeling
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From Simple to Complex




Is Urban Canopy Layer "Convective"?

/ STABLE LAYER
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Impact of individual buildings

100

Z [m]

50§

200

0 v
0 50 100 150

Chimney effect of a tall building

Flow behind a distributed
generator



Performance of Numerical Models

J.J. Baik, S.B. Park SNU




Summary

Understanding of air pollution problems is
gained through

Basic science
Field studies and laboratory experiments
Modeling/Simulation

How is this going to change in the
future?



Past and Future

Beijing, now

Particulate matter readinge for weeks 8 July - 4 August 2008

PM10/micrograme per cubic metre
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The Future

Measurement techniques will
become more sophisticated =~ 7.
and perhaps less/more -

expensive

Models will become more
comprehensive and output .. X
will be more realistic with L0 X0
increase in computational
power




On Using Comprehensive Models

Inevitable errors in numerous model inputs make
model evaluation a difficult exercise

Numerical errors

Finite grid sizes create false effects-mixing and
chemistry

Responses of the complex model are very difficult
to interpret

= Need to draw generalizations based on model results
that are "messy"” as reality



Future of Modeling

Need both comprehensive as well as
simpler semi-empirical models

Simple models provide insight that is
more difficult o obtain from complex
models

Might need simple models to interpret
results from complex models
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Model Performance

Observed Concentration (,_Ls.-'ms)
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Field study next to major highway in Raleigh, North Carolina,
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