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INTRODUCTION 
The attempt to improve the effectiveness and the operational ability of classic statistical methods 
and discover perspectives of modern and sophisticated approaches such as neural networks, for 
air quality forecasting, is the basic motive behind the present research.  
 
Linear regression methods have been applied for decades and are well known and understood 
(Millionis, A.E. and T.D. Davies, 1994; Robeson, S.M. and D.G. Steyn, 1990; Ryan, W.F. 1995; 
Shi, J. P. and R.M. Harrison, 1997). However, there are numerous environmental processes that 
exhibit significant non-linear behaviour. Advances in the field of Artificial Neural Networks 
(ANN) in the late 1980s popularised non-linear regression techniques like Multi-layer 
Perceptons (MLP) and self-organising maps (SOM). It is shown that Neural Networks (NN) can 
be trained to successfully approximate virtually any smooth, measurable function (Hornik, K., 
M. Stinchcombe and H.White, 1989). NN are highly adaptive to non-parametric data 
distributions and, whilst other statistical methodologies require a set of assumptions to be 
fulfilled, the former make no prior hypotheses about the relationships between the variables. NN 
are also less sensitive to error term assumptions and they can tolerate noise, chaotic components 
and heavy tails better than most of the others methods. Other advantages include greater fault 
tolerance, robustness, and adaptability especially compared to expert systems, due to the large 
number of interconnected processing elements that can be trained to learn new patterns 
(Lippman, R.P., 1987). These features provide NN the potential to model complex non-linear 
phenomenon like air pollution (Kolhmainen, M., H. Martikainen and J. Ruuskanen, 2001; Perez, 
P. and A. Trier, 2001; Chelani, A.B., D.G. Gajghate and M.Z. Hasan, 2002).  
 
THE DATA 
In the present paper, MLP models were developed including a number of air quality and 
meteorological parameters for the Greater Athens Basin, Greece. More specifically, a 2-year 
long (1995-96) data set is being used, consisting of hourly air pollutant concentrations and 
meteorological information, as resulting from the operation of the corresponding monitoring 
networks in the city of Athens. This time period was selected on the basis of data homogeneity 
availability and completeness. Information on the air pollution monitoring network of Athens 
can be found in Directorate of Air and Noise Pollution, 1997. 
 
In particular, the data set collection of the current study consists of 2-year long hourly values for 
the concentration levels of carbon monoxide (in mg/m3), nitrogen dioxide and ozone (in µg/m3), 
as well as hourly data for air temperature and soil temperature at 15cm below the ground surface 
(oC), solar radiation ( Wm-2), wind speed (ms-1) and direction (rad), pressure (mbar), and relative 
humidity. 
 
The meteorological observations orogonate from the meteorological observation station of the 
National Observatory of Athens for the same time period, and they are expected to be of high 
quality and consistence. The O3 air quality information used in the analysis were collected at the 
monitoring stations of Patision, Marousi and Liosia, located nearly at the centre, at the northwest 
and northeast suburbs of the city of Athens respectively. Regarding the NO2 and CO air quality 
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information, the monitoring stations of Patision and Athinas were used, situated nearly at the 
centre of the city. The selection of the monitoring stations was based on the frequency of high 
concentration levels of the respective pollutant observed in the whole Athens Basin. In addition 
to the available variables presented in the first part, variables describing the month and the day 
were created, so as to reveal the potential influence of those factors to the behaviour of the 
examined air pollutants. Pollution episodes are highly correlated to the spatial and temporal 
distribution of emissions. The dependence of the emissions on the city activities induces 
generally low pollution levels during weekends, even if the prevailed weather conditions are 
unfavourable. Similarly, the majority of pollution episodes take place during the summer months 
(April to September) (Ziomas, I., D. Melas, C. Zerefos, A. Paliatsos and A. Bais , 1995). 
 
During the selection process of the influence factors, variables with the largest partial correlation 
coefficient with pollutant formation were selected. The transformation of the variables was 
effective and led to better results, in some cases. For example, the sine and cosine functions of 
the wind direction were created, leading to minor improvements of the models. However, the 
index WD= 1+sin(θ+π/4), suggested by Melas, D., I. Kioutsioukis, and I. Ziomas (2000) and 
adapted by Chelani, A.B., D.G. Gajghate and M.Z. Hasan, (2002), provided better results in 
most of the cases.   
 
NEURAL NETWORKS 
Neural Networks use a complex combination of weights and functions to convert input variables 
into an output (prediction). The MLP consists of a system of simple processing interconnected 
elements called neurons, cells or nodes. Each of the various inputs to the network is multiplied 
by a connection weight. These products are simply summed, fed through a transfer function to 
generate a result, and then output. This is a gradient descent algorithm that is normally used to 
train a MLP network. Errors in the output of this procedure are assumed to be due to all 
processing elements and connections, and these errors are reduced by propagating the output 
error backward to the connections in the previous layer. 
 
The type of neural network used in this study was the three-layer back-propagation network, 
consisting of an input layer, a hidden layer and an output layer (Cobourn, W.G., L. Dolcine, M. 
French and M.C. Hubbard, 2000). The learning algorithm used in the present study was 
Levenberg-Mardquardt back-propagation of Matlab Neural Network toolbox. The transfer 
functions selected for the layers were sigmoid (eq. 1) for the hidden layer and linear for the 
output layer (Gardner, M.W and S.R. Dorling, 1998; Kolhmainen, M., H. Martikainen and J. 
Ruuskanen, 2001). The S-shaped logistic sigmoid function is bounded between 0 and 1, 
therefore input and output data should be also normalised in the same range.  
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Data were normalized using eq. 2, where ẑ  is the normalised value and zmin and zmax are the 
minimum and the maximum values of z, respectively. The adapted neural network models 
consisted of 9 nodes in the input parameter, 20 nodes in the hidden layer and one node in the 
output.  The development of the models consisted of two steps. The first step is the training 
stage, where the network is subjected to a training set of input-output patterns for the year 1995 
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time series. The second step is the testing stage, where the performance of the network is tested 
on patterns that have been ‘revealed’ during the former stage; the year 1996 was used as the 
testing set. 
 
RESULTS 
The lagged observation values (i.e. of the previous hour or day) were completely ignored, as this 
research is concentrated on the extraction of potential relationship between air quality and 
meteorological parameters. This is probably one of the reasons for the low forecasting ability of 
the derived models. The development set includes the first year observations (1995), which 
correspond to 8760 values (n=8760), while the following 8784 (1996, a leap year) were used as 
the validation set for the prediction. 
 
The ability of NN models to forecast daily hourly concentration levels o O3, NO2 and CO was 
verified by performing a linear regression between the network response and the target 
(observed values). Several statistics were used to evaluate errors of prediction results, including 
the observed and forecasted mean and standard deviation of the pollutant concentration levels, as 
well as correlation coefficient (r), mean bias error (MBE), error standard deviation (s), the root 
mean square error (RMSE). The results are summarized at two tables: Table 1 for O3 and Table 
2 for NO2 and CO.  
 
The analysis of the results shows that the observed and forecasting means are similar for the 
training sets; nonetheless they are quite different for the testing period. Additionally, the 
observed standard deviations are greater than the forecasted for all sites, revealing the 
ineffectiveness of the models to predict high concentration levels of the pollutants examined. 
Regarding the correlation coefficient, measuring the linearity between observed and predicted 
values, showed similarities in the relative performances of the models for the training tests of all 
sites, except Athinas station, which had the lowest concentration (0.45). Marousi for O3 and 
Patision for CO had the highest correlation in the range of 0.877. However, the same linear 
relationship in the testing set is significantly reduced ranging between 0.383 (Patision – O3 ) and 
0.010 (Athinas –CO, as it was expected). 
 
Table 1.  Model forecast statistics between observed and model forecasted ozone at Patision, 
Liosia and Marousi monitoring stations. 

O3 
Patision Liosia Marousi Model Statistics 

1995 1996 1995 1996 1995 1996 
mean (obs.) 25.43 28.16 61.73 61.73 63.69 68.71 
mean (for.) 25.47 41.96 62.45 59.82 63.68 73.75 
st.dev. (obs.) 19.25 20.91 39.27 41.69 45.25 44.48 
st.dev. (for.) 16.67 33.88 34.02 36.99 39.69 39.96 
r 0.866 0.383 0.866 0.062 0.877 0.177 
MBE -0.000 -0.180 0.000 0.325 0.000 -0.028 
s 0.182 0.422 0.123 0.556 0.125 0.304 
RMSE 0.182 0.459 0.123 0.555 0.124 0.305 
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Table 2.  Model forecast statistics between observed and model forecasted nitric dioxide and 
carbon monoxide at Patision and Athinas monitoring stations. 

NO2 CO 
Patision Athinas Patision Athinas Model tatistics 

1995 1996 1995 1996 1995 1996 1995 1996 
mean (obs.) 93.51 95.36 51.40 80.24 5.12 4.83 3.27 3.61 
mean (for.) 93.38 70.20 51.40 196.4 -0.60 -0.66 17.69 3.11 
st.dev.(obs.) 39.78 46.14 32.15 32.49 3.06 2.93 2.41 2.49 
st.dev.(for.) 30.57 55.41 14.70 80.31 0.17 0.23 6.55 2.46 
r 0.768 0.089 0.450 0.117 0.877 0.177 0.761 0.010 
MBE 0.000 0.212 -0.000 -0.579 -0.000 -0.028 0.000 0.038 
s 0.133 0.298 0.449 0.614 0.125 0.304 0.120 0.261 
RMSE 0.133 0.366 0.533 0.733 0.124 0.305 0.120 0.264 
  
Furthermore, the MBE, expressing the difference between the estimated mean and population 
mean, equals zero in all training cases, while it is raised up to –0.579 for NO2 at Athinas station. 
Generally, the negative values of the MBE indicate the trend of the adapted models to 
underpredict the observed data and do not effectively capture the extreme values that are of 
major concern for operational use.  The standard deviation is used to present the range of 
prediction errors based on observed data, reaching high values at Liosia and Athinas stations for 
O3 (0.556) and NO2 (0.614), respectively. Finally, the square roots of the mean of all squared 
residual between the observed and forecasted (RMSE: error due to model) were fairly high, 
especially at the abovementioned stations for the same pollutants, indicating the capability of 
further improvement of the models. 
 
CONCLUSIONS 
Overall, it appears that the MLP models developed did not perform very satisfactorily with the 
current datasets, preventing the extraction of valuable information about the connection of air 
quality to meteorological variables.  The results of the analysis state that NN appear quite 
complex and less familiar than traditional statistical methods, suggesting that more 
experimentation is needed. Therefore, implementation of a NN may be considerably more 
difficult than using a classic linear model. There is a strong relation and dependence on user 
judgement that can be disastrous to the model fitting. Complex NN may induce spurious 
correlations between explanatory and response variables, as too simple ones will result in a pure 
ability to generalize a functional relationship. Moreover, NN are arguably extreme examples of a 
black-box approach where the adapted models slightly improve in understanding the underlying 
data generating mechanism (Balkin, S.D., 2000). Likely strategies include using additional 
variables (for example additional weather elements and synoptic patterns) or changing the nature 
of the model  (for example different number of hidden neurons and layers in the model). It is 
also worthy to mention that alternative possibilities suggests the weather – air pollutants 
relationships might be sufficiently complicated that a level of random variation or noise exists 
(as assumed in some ozone trend studies), which cannot be captured by even a relatively 
sophisticated empirical-statistical model such as a neural network (Flaum J.B., S.T. Rao and  
I.G. Zurbenko, 1996). 
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