
ESTIMATING SOURCE TERM PARAMETERS  

THROUGH PROBABILISTIC BAYESIAN INFERENCE: AN APPROACH BASED ON  

AN ADAPTIVE MULTIPLE IMPORTANCE SAMPLING ALGORITHM  

 

Harizo Rajaona1, 3, Patrick Armand1, François Septier2, 3, Yves Delignon2, 3,  

Christophe Olry4, and Jacques Moussafir4 

 
1CEA, DAM, DIF, F-91297 Arpajon, France 

2Institut Mines-Télécom / Télécom Lille, 59650 Villeneuve-d’Ascq, France 
3LAGIS UMR 8219, 59650 Villeneuve-d’Ascq, France 

4ARIA Technologies, 92100 Boulogne-Billancourt, France 

 
Abstract: This paper presents an adaptive approach based on probabilistic Bayesian inference to estimate the 

parameters of an atmospheric pollution source term. After introducing the problem and assessing the computational 

framework, we present an Importance Sampling based algorithm called Adaptive Multiple Importance Sampling 

(AMIS). It performs an efficient calculation of the source parameter posterior distribution by iteratively upgrading the 

proposal’s parameters and recycling all generations of weighted samples, thus allowing a faster convergence and 

reducing the number of necessary iterations. We highlight the results of the AMIS by comparing it to a MCMC 

estimation in a simple example. 
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INTRODUCTION 

The threat of Chemical, Biological, Radiological, and Nuclear (CBRN) releases in the atmosphere is a 

key issue. Such incidents may be due to terrorist acts, using non-conventional methods such as dirty 

bombs in order to create panic. The origin of these events can also be accidental, for example given a leak 

of hazardous material on an industrial site. Either way, the development of tools to detect the source and 

assess the parameters of the release is a major concern for the population’s safety. Scientifically speaking, 

the problem of source term estimation (STE) is quite challenging, because obtaining the most accurate 

estimation within the shortest amount of time is crucial. 
 

There are currently several approaches to solve the STE problem, each of them using a specific set of 

skills. One line of study focuses on adjoint-transport modelling and retro-transport, as further developed 

in Pudykiewicz (1998) or Issartel and Baverel (2003) where backward simulations are computed using 

the principle of time-symmetry in atmospheric transport to reconstruct the source. These methods perform 

well, but most of them cannot quantify the uncertainty relative to the estimated source. Using 

deterministic Bayesian inference, it is also possible to solve the problem at a global scale as mentioned in 

Issartel (2005).  
 

Another way of dealing with STE problems consists in coupling Bayesian inference with stochastic 

sampling. The Bayesian framework allows encompassing errors (from the model and from the 

observations) and dealing with both the presence and absence of possible prior information regarding the 

source. Sohn et al. (2002) used a general Bayesian Monte Carlo (BMC) method to reconstruct indoor 

sources successfully. Delle Monache et al. (2008) showed that Monte Carlo Markov Chains (MCMC) 

also perform well for a STE problem at continental scale by correctly estimating the Algeciras incident 

source term. Chow et al (2008) applied the MCMC methodology to an urban scenario, highlighting the 

need of an accurate dispersion model to generate complex flows: Computational Fluid Dynamics (CFD) 

was used, and came with a heavy cost in computation time. Keats et al. (2007) emphasized that issue and 

coupled MCMC and backward modelling to gain computation efficiency; this work has later been 

extended in Yee (2008) to multiple-source scenarios. 
 

In this paper, we present a method in the context of probabilistic Bayesian inference, based on Importance 

Sampling (IS) principles. This method, called Adaptive Multiple Importance Sampling (AMIS) and 

presented in Cornuet et al. (2012) adds an adaptive layer on the IS basis by adjusting the parameters of 

the proposal distribution over an iterative scheme and enabling a recycling process over all the previously 

generated results at each iteration. It has proven to give good results for instantaneous releases, as shown 

in Ickowicz (2013). In our case, we extend the application of the AMIS algorithm to a STE situation for 

non-instantaneous releases with a simple example. 



THE BAYESIAN FORMULATION OF THE PROBLEM 

We define 𝑌 the concentration measurements given by a set of 𝑁𝐶  sensors dispatched over a network. 𝑌 is 

defined within each time step by: 
 

𝑌 = (𝑦1,𝑡1, 𝑦1,𝑡2, … , 𝑦1,𝑡𝑇 , 𝑦2,𝑡1, … , 𝑦𝑁𝑐,𝑡𝑇) 
 

We are interested in estimating the position 𝜃 = (𝑥𝑠, 𝑦𝑠) of the source term, and  𝑞 which is the release-

rate vector. We assume that we deal with a source located on ground level, so the 𝑧𝑠   coordinate is not 

mentioned. In practice, 𝑞 is divided into 𝑇𝑆   time steps, and formally represents the discretization of a 

non-instantaneous source over the time dimension. The number of parameters to be estimated is 

then  𝑇𝑠 + 2. This concept of discretization is inspired by the work of Koohkan et al. (2012), where such a 

process is applied on both time and spatial domain. In our case, we narrow it down to a time-only 

discretization. Our data model is hence defined by: 
 

𝑌 = 𝐶𝜃𝑞 + 𝑏 
 

𝐶𝜃 is a source-receptor matrix of the concentrations obtained from a unitary release of a source at 

potential location 𝜃: 𝑞 then acts as a modulator for the matrix 𝐶𝜃 switching from unitary concentrations to 

the actual concentrations by a multiplication factor. 𝑏 is the noise vector which we assume to be 

independently and identically distributed over the 𝑁𝑐 sensors: it unifies the model error, the measurement 

error and the model representativeness error in one term. We consider it as a centred, Gaussian-distributed 

noise with a  𝜎𝑜𝑏𝑠
2    observation variance. In our Bayesian reasoning, we aim at estimating a posterior 

distribution (𝑞, 𝜃|𝑌) which can be rewritten as: 
 

𝑝(𝑞, 𝜃|𝑌) = 𝑝(𝑞|𝜃, 𝑌)𝑝(𝜃|𝑌) 
 

𝑝(𝑞|𝜃, 𝑌) is defined as the conditional posterior of 𝑞 . We know that the measurement noise is Gaussian, 

so 𝑝(𝑌│𝜃, 𝑞) follows a Gaussian distribution. Given that 𝑞 and 𝜃 are independent and if we make the 

assumption that the prior distribution is Gaussian, then 𝑝(𝑞│𝜃, 𝑌) is Gaussian. In our case, as in Winiarek 

et al. (2011) we shall assume that the prior statistics on the source is given by a Gaussian profile. This 

process reduces the dimension of the problem from 𝑇𝑆  + 2 to 2, because the parameters of 𝑝(𝑞|𝜃, 𝑌) can 

be computed analytically: only θ remains to be estimated through its posterior distribution  𝑝(𝜃|𝑌). It can 

be expressed, following the Bayesian rule, as follows: 
 

𝑝(𝜃|𝑌) =
𝑝(𝑌|𝜃)𝑝(𝜃)

𝑝(𝑌)
 

 

𝑝(𝜃) is the prior probability density function of the parameter vector 𝜃, 𝑝(𝑌|𝜃) is the likelihood function 

of having the concentrations 𝑦 using the parameters 𝜃, and 𝑝(𝜃|𝑌) is the posterior distribution for the 𝜃 

variable. We can omit the marginal distribution 𝑝(𝑌) which is just a normalization term in our case, and 

simplify:  
 

𝑝(𝜃|𝑌) ∝ 𝑝(𝑌|𝜃)𝑝(𝜃) 
 

The likelihood follows a Gaussian distribution, and its parameters are function of the 𝑝(𝑞) parameters as 

well as 𝐶𝜃 . Each likelihood computation implies running a forward dispersion model, which complexity 

directly impacts the total amount of computation time. On the other hand, there is no dependence between 

the problem’s formulation and the dispersion model used to compute 𝐶𝜃: the algorithm itself won’t 

change even if the way of computing 𝐶𝜃 does. 
 

Estimating a posterior distribution is a difficult task, because it often cannot be formulated analytically. 

That’s why we have to rely on Monte Carlo methods to compute an approximation of our posterior. One 

classical way to sample from the posterior is based on Markov Chain Monte Carlo (MCMC) algorithms: 

there has already been extensive work on their application to source term estimation problems: see Keats 

et al., (2007), Yee E. (2008), Wade et al. (2013) for examples. Even though MCMC have proven to be fit 

for several cases, they might not provide a sufficient convergence speed, which may be critical for 

operational situations. In the next paragraph we introduce a different approach which constitutes the core 

of our method. 

 



THE AMIS ALGORITHM 

Another family of Monte Carlo methods aims at sampling as close as possible to a target distribution 𝜋, 

and is called Importance Sampling (IS). It consists in drawing a set of 𝑁 samples (𝑥1, … , 𝑥𝑁), called 

particles, from a proposal distribution 𝑞, and compute importance weights:  
 

∀𝑖 ∈ {1, … , 𝑁}, 𝑤𝑖 =
𝜋(𝑥𝑖)

𝑞(𝑥𝑖)
 

 

By coupling the particles and the importance weights, we can derive an approximation of the target 

distribution:  
 

𝜋(𝑥) =
1

𝑁
∑ 𝑤(𝑥𝑗)𝛿𝑥𝑗

𝑁

𝑗=1

(𝑥) 

 

where 𝛿 is the Dirac function. IS can be formulated iteratively in order to refine the information at a given 

time by using the previous generation of particles and weights: such methods are called Population Monte 

Carlo (PMC) in Cappé (2002). However, if the proposal distribution is badly defined, then the 

convergence of such algorithms is strongly compromised. 
 

This issue emphasises the need to use an adaptive scheme, and evolve from a static proposal to a dynamic 

one where the parameters are modified adaptively for every iteration of the algorithm, so that the proposal 

may closely fit to the target distribution. That is the main goal of the Adaptive Multiple Importance 

Sampling (AMIS) algorithm where the parameters of the proposal are updated, so that the Kullback-

Leibler divergence between the target distribution and the proposal distribution is minimized. The AMIS 

also uses a recycling process on all the generations of weights and particles to enhance the convergence 

speed and reduce the necessary amount of iterations. 
 

In our case, the target distribution is the posterior  𝑝(𝜃|𝑌), and the proposal is defined as a mixture of 𝐷 

multivariate Gaussian distributions: 
 

𝑞(𝑥; 𝛼, Ξ) = ∑ 𝛼𝑑𝑞𝑑(𝑥, Ξ𝑑)

𝐷

𝑑=1

 

 

The coefficients 𝛼 and the distribution parameters Ξ are adjusted iteratively by the AMIS algorithm. A 

step-by-step presentation of the AMIS algorithm is presented in Ickowicz et al. (2013). 
 

SIMULATION AND RESULTS 
The AMIS algorithm was run on a simple test case, using synthetic noisy concentration values on the 

model of (2). We consider a square domain of 50x50 where sensors are uniformly dispatched following a 

5x5 grid. 
 

 

 

 

 

 
Figure 1. Schematics of the sensors setup,  

with the position of the source in green,  

the wind direction represented by a red arrow,  

and the sensors by coloured dots.  

Red sensors read nonzero values,  

on the contrary of blue ones. 



We initialized the AMIS algorithm with a mixture of 𝐷 = 4 components, and the only prior information 

we take into account is the fact that the source is within the 50x50 domain. To compute the source-

receptor matrix, we use a Gaussian puff model for faster computation. We then compare the results with a 

MCMC algorithm based on a simple Metropolis-Hastings sampler. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Results of the simulation, for a source term located at position (10, 20)  

for the AMIS algorithm (first row) and the MCMC algorithm (last row).  

First row: final repartition of the 100 particles after 5 iterations (left),  

approximation of the posterior distribution of the x (top) and y (bottom) positions of the source.  

The dashed line represents the true value of the parameter.  

Second row: trajectory of the Markov chain after 5000 iterations (left),  

histogram of the x (top) and y (bottom) estimated parameters. 
 

The AMIS provided the quickest estimation within 5 iterations in 93 seconds, compared to the MCMC 

algorithm which took approximately took 18 minutes to run over 5000 iterations and delivered an 

estimate less precise than AMIS. By definition the MCMC only takes into account the previous state of 

the chain while iterating with the AMIS uses all the information available. Moreover, the results of the 

AMIS can be used starting from the very first iterations, not like the MCMC where the first phase of the 

algorithm called burn-in phase outputs results that have to be discarded. However, we realized that the 

quality of the AMIS algorithm is strongly conditioned by the choice of the proposal distribution and how 

we initialize it, as it is for most of IS based techniques. Using a retro-propagation calculation as a first 

step before running the AMIS, it is possible to narrow down a smaller region of interest in the space of 

parameters where the proposal distribution can be optimally initialized. 



 

CONCLUSION 

In this paper, we have presented an adaptive scheme in the spirit of Bayesian inference to solve STE 

problems. It has the advantage of converging faster than conventional algorithms such as MCMC, and can 

consequently fit better for emergency cases where the time of response regarding a CBRN incident must 

be minimal. After testing the AMIS on a simple case, we are currently in the process of validating it 

against an experimental setup such as the FUSION Field Trial 2007 (FFT 07) experimental campaign 

which has proven to be a good benchmark tool for source estimation as mentioned in Platt et al. (2010). 

Another line of work to be pursued is the consideration of non-stationary wind conditions, and how to 

deal with the impact of the wind uncertainty in our estimation. 

 

The AMIS has also the advantage of being fit to run using parallel computing over the particles, not like 

the MCMC where there is a conditional link between two consecutive states of the Markov chain. With 

the possibility of using High Performance Computing (HPC), our future work will aim at coupling the 

AMIS with more elaborate models, such as the Parallel Micro-Swift-Spray (PMSS) tool described in 

Tinarelli et al. (2013) and apply it to non-trivial topographic cases such as urban scenarios. 
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