Point Source Reconstruction : Analyzing Localization Features of a Weighted Least-Squares Technique

Sarvesh Kumar Singh

singh@ufrst.univ-evry.fr

&

Grégory Turbelin, Jean-Pierre Issartel, Amir Ali Feiz, Pierre Ngae, Emerson Barbosa, Pramod Kumar

Motivation

- Importance in emergency actions and national security.
- Necessity of finding optimal solution to inverse problems.
- Localization features of the inverse solution.
- Resolution of the source estimates.

Objective

- To propose an inversion technique.
- To discuss optimal localization properties of the inverse solution.
- Evaluation using Fusion Field Trials 2007 dataset.

The presentation is focused for inversion of a continuous point release.

- Point source reconstruction: Parametric estimation
- Unknowns: location & strength

Approach

Source—receptor relationship

A discrete version of the source is retrieved in finite dimension.

For non-parametric source, m<<N

Weight matrix

- \Rightarrow Purely diagonal and $w_{jj} > 0$, for j = 1,...,N
- $\implies \sum_{j=1}^{N} w_{j,j} = m$
- Criterion for best choosing w is

$$diag(\mathbf{A}_{\mathbf{w}}^{\mathrm{T}} \mathbf{H}_{\mathbf{w}}^{-1} \mathbf{A}_{\mathbf{w}}) = 1$$

3

W is computed by an iterative algorithm (Issartel, 2005).

continue...

• In case of a point source of strength q located at x_0

$$\mathbf{s}(\mathbf{x}) = q\delta(\mathbf{x} - \mathbf{x}_0)$$

$$\mathbf{\mu} = qw(\mathbf{x}_0)\mathbf{a}_{\mathbf{w}}(\mathbf{x}_0)$$
The source estimate is,
$$\mathbf{s}(\mathbf{x}) = qw(\mathbf{x}_0)\mathbf{a}_{\mathbf{w}}(\mathbf{x}_0)^{\mathrm{T}}\mathbf{H}_{\mathbf{w}}^{-1}\mathbf{a}_{\mathbf{w}}(\mathbf{x})$$
5

Maximum of the s coincides with the point source location.

Now, intensity can be computed as, $\hat{q} = s(\mathbf{x}_0) / w(\mathbf{x}_0)$

Desired localization features

1. Measurements should be well retrieved

data resolution matrix, ideally, identity m×m

2. Source should be well retrieved in spite of :

information sparsity (limited number of meas.)

 $N \times N$ model resolution matrix, ideally, identity.

information accuracy (errors in the measurements)

Variance of the source, ideally, zero.

Measurements should be well retrieved.

Data resolution matrix

Harmo 16, Varna, 8-11 September 2014

Source should be well estimated from exact measurements

Exact source retrieval is not feasible

$$R_{M}$$

$$\mathbf{R}_{\mathbf{M}} = \mathbf{A}_{\mathbf{w}}^{\mathrm{T}} \mathbf{H}_{\mathbf{w}}^{-1} \mathbf{A} = \mathbf{A}_{\mathbf{w}}^{\mathrm{T}} \mathbf{H}_{\mathbf{w}}^{-1} \mathbf{A}_{\mathbf{w}} \mathbf{W}$$

$$diag(\mathbf{A}_{\mathbf{w}}^{\mathrm{T}} \mathbf{H}_{\mathbf{w}}^{-1} \mathbf{A}_{\mathbf{w}}) = 1$$

$$diag(\mathbf{R_M}) = diag(\mathbf{W})$$

Continue: point source at x_k

Source retrieval and measurement errors

 covariance matrix of estimated source versus measurement errors cov matrix

$$\operatorname{cov}[\mathbf{s}^{retrieved}] = \mathbf{A}_{\mathbf{w}}^{\mathbf{T}} \mathbf{H}_{\mathbf{w}}^{-1} \operatorname{cov}[\boldsymbol{\mu}] \mathbf{H}_{\mathbf{w}}^{-1} \mathbf{A}_{\mathbf{w}}$$

• **Assumption**: measurement errors are mainly due to model and:

Least-squares cost function is written as: $J = (\mu - A_w W s)^T H_w^{-1} (\mu - A_w W s)$

• Issartel et al. (2012) have shown that $\mathbf{H}_{\mathbf{w}}$ provides an optimal discrimination to the measurements.

If
$$cov[\mu] = H_w$$

Then
$$var[\mathbf{s}^{retrieved}] = diag(\mathbf{A}_{\mathbf{w}}^{\mathbf{T}}\mathbf{H}_{\mathbf{w}}^{-1}\mathbf{A}_{\mathbf{w}}) = 1$$

Fusion Field Trial 2007

- 10 min Propylene release in a flat terrain (Storwald, 2007)
- Source height = 2m
- 100 DGPID fast response cond
- Sampling height = 2m
- Trial 7
- North-West wind direction

Computations

- Discretized domain, 1200 m × 1200 m.
- 400 grid points in each direction with uniform grid size 3m.
- 89 concentration measurements.
- Gaussian dispersion model (Sharan et al. 1996).
- Iterative computation of matrix **W**.
- True source (200, 200)
- True source strength = 5.53 g/s

Results

- A priori information apparent to monitoring network
- Well & poorly monitored regions are distinguished.

Distribution of weights

Retrieval

• Source is retrieved at a distance of 3m from true source.

• Strength is over-predicted by 25%.

Distribution of source information

continue...

(b) is the best resolution, achieved with limited measurements.

continue...

Model Resolution Matrix

Harmo 16, Varna, 8-11 September 2014

Conclusions

- Inversion technique retrieve the point source close to the true source.
- Technique fullfills the proposed localization criteria.
- Source is observed to be distinctly located and lies in a highly illuminated region of the monitoring network.
- Sharpness of the resolution is maximum at the retrieved location of the point source.

Thank You for Your Kind Attention

References

- 1. Issartel, J. P.: (2005), 'Emergence of a tracer source from air concentration measurements: a new strategy for linear assimilation', *Atmos. Chem. Phys.* **5**, 249–273.
- 2. Issartel, J. P., Sharan, M. and Singh, S. K.: (2012), 'Identification of a point release by optimally weighted least squares', *Pur. Appl. Geophys*, **169**, 467-482.
- 3. Sharan, M., Issartel, J. P., Singh, S. K. and Kumar, P.: (2009), 'An inversion technique for the retrieval of single-point emissions from atmospheric concentration measurements', *Proc. R. Soc. A* **465**, 2069-2088.
- 4. Sharan, M., Singh, M.P., Yadav, A.K., Agarwal, P. and Nigam, S. (1996). 'A mathematical model for dispersion of air pollutants in low wind conditions'. *Atmospheric Environment* **30**, 1209–1220.
- 5. Storwald, D.P.: (2007): Detailed test plan for the fusing sensor information from observing networks (Fusion) Field Trial (FFT-07). Meteorology Division, West Desert Test Center, U.S. Army Dugway Proving Ground WDTC Document No. WDTC-TP-07-078.