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=>» Accidental or intentional atmospheric contaminant release (local scale)

— Source estimation methods aim to estimate
» source(s) location(s)
* source type, strength, and number
* release start time and duration

— Given:
* site description (terrain, vegetation, building)
« available meteorological information
* m concentrations measured by a network

Several source estimation algorithms are currently being developed
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s — WThe discrete inverse problem
.
{;}@@ =>» Source described, on a grid of N points, by a source vector s

\ﬂﬂ => It generates a field of concentrations only known through m
| observations z4=C(x;) at locations Xx; (i=1...m)

The problem consists in determining the N unknown
components of the source vector from the m

measurements
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dThe renormalization technigue

=» Deterministic technique:
— use of a minimum of a priori information
— use of adjoint transport equations (receptors oriented modeling technique)
— computation of a renormalizing function

=>» It returns a source estimate which is linear with respect to the observations

— Issartel et al. (2005, 2007): utility of the renormalization to minimize inversion
artifacts

— Sharan et al. (2009): reconstruction of a single ground-level point source
— Singh et al. (2013): identification of multiple-point sources releasing similar tracer
— Turbelin et al. (2014): generalization for discrete inverse problems

For a matter of simplicity, this presentation only deals with continuous releases,
for time varying releases see Issartel et al. (2007)
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dThe linear model

=» The concentrations measured at the captors locations are linear functions of
the sources, the multiplicative factor being the retroplumes matrix A

— components obtained by solving adjoint equations

Error vector
(Nx1)

nknown source

NSRS — vector (Nx1)
vector (mx1) determination 5
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A minimum weighted norm solution

= Any solution to the problem can be written as S=Gpu
— G (Nxm): some generalized inverse of A

=>» Discrete renormalized solution given by
T g1 ~1AT -1 A T\-1
Sy, =ALH n=W'AT(AWAT) '
— unigue minimum W-weighted norm solution of the problem, i.e.
S, Minimizes [s|, =+/s' Ws

=> Optimal diagonal weight matrix W (NxN), in case of a single point
source

— the maximum value of the estimate corresponds
to the location of the source

— the release intensity of the source is given by
S;w(Xo)
W(X, )

Intensity =
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dThe renormalization condition

=» Optimal reconstruction of position and intensity of all single sources,
when (renormalization condition)

N
- T y-1 _ - .
dlag(AW HWAW)=1 with w; >0 and > w, =m
j=1
=» The components of the optimal weight function are the discrete values

of the visibility function

— characterizes the regions well or poorly monitored
by the network
« focus at the detectors locations
» decreases with increasing downwind distance

It has been interpreted as the prior distribution of the emissions apparent
to the monitoring system
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i — WComputation of the solution
{:30@ =>» The inverse operator is the W-weighted generalized inverse of A
A Sw =W AT (AW AN "u=An

— computed by “classical” matrix operations
— or by making use of the pseudo inverse concept

A:;V _ W—1/2 (Aw—1/2)+

— “(.)*": Moore—Penrose inverse of a matrix

=>» Several efficient algorithms to obtain a pseudo-inverse
— the most reliable one is based on the Singular Value Decomposition
method

But the optimal matrix W has first to be computed
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dComputation of the optimal weights

= “The components of W are the diagonal elements of the resolution
matrix R when the diagonal elements of the symmetric matrix R,
are equal to one”

_ T -1
R=Al HIA Ry =Ay Hy Ay
_ _wwrla Tt a2a Tyt .
W, —RJ.j =W;; @; Hwaj when ijj =W;; 8, HWaj =1

=» This algorithm converges uniformly to the optimal weights matrix W

Algorithm 1. Computing the optimal weighted matrix W
Require: Let A e RNm

1: N=columns[A]

2: m=rows[A]

3 W=m/N*Ix (initialization of W)

4: while dyy < =0.99 (definition of the convergence criteria)

5: H-=(AW-1AT)! (computation and inversion of the weighted Gram matrix)
6: Forj=1 to N

7: a=A(j) (writing the j columns of the matrices A as vectors)

8: d= a;THla;*w; (computation of the diagonal elements of Ry.

0: End for stored in a vector d)

10: dpin = min(d) (convergence verification)|

11: W=W+(diag[d])!? (definition of a new weight matrix)

12: end while

13: return W 9
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1 The Kit Fox series

=» Conducted at the Nevada Test Site (USA) in late August
and early September 1995 |

— CO, was released as a tracer

=» 3 different surface roughness configurations:
— ERP + URA
— URA only :
— Smooth Desert Surface LULLLLLLLL J(J”L IRREAY!

=» The smooth desert releases, also referred to as the “DRI /WRI CO2-II”
experiments, have been described in a separate report (Coulombe et al.,
1999) never published and only mentioned by King et al. (2002)

These late experiments have never been used for evaluation purposes
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dThe smooth desert kitfox experiments

=>» Sensors on 3 arrays oriented perpendicular to the centreline of the
predicted transport course of the cloud

S0m  100m Arar
N/ - .

ay Array
. . E-m Met. Tower 2 | |
232° Wind Direction T [ 90 m
/ / | l ‘

8-m Met. Tower 4

ch Pipe

Release Box

in

= 30 releases under neutral to extremely stable conditions
— 22 short duration releases (1.5 kg/s over 20s)

— 8 continuous releases (1-1.5 kg/s over 150-360s)

Table 1: Characteristics of the continuous release experiments
Test  Average wind speed Average wind direction Release rate Release duration  Stability

No. 2m a.gl (ms?) 2m a.gl (degree) (kgsh) mm:ss Class
9.4 i5 234 1.527 231 D-E
9.7 23 229 1.497 331 F
9.9 1.8 233 1.438 331 FG
10-5 20 232 1.037 3:38 G+
10-6 18 128 0.593 300 FG
12-7 1.6 211 1.019 4:30 FG
13-4 30 227 1.114 3:32 E
137 23 213 1.028 300 F
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— WInputs for the renormalization method

{:30 = Components of A computed from an analytical Gaussian dispersion
ﬂﬁ} model (Sharan et al., 1996) used in a backward mode

— use of Briggs’ model for dispersion parameters

' =» Concentrations from 24 captors of the 50m and 100m arrays
W/ / averaged to obtain the measured concentrations vector p (i.e. m=24)

N\ =» Technique implemented on a discretized domain of 300x300 points
(i.,e. N=90000) with Ax =Ay=1m

On a machine Intel® Core™ i5-3427U CPU 1.80GHz, 8Go RAM, the
CPU time involved in estimating the components of A, W and s, was
approximately <30 seconds
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A Results and discussion

E =» Regions

o | .
Hﬂ — well monitored by the network: white
— poorly monitored by the network: black

—

The source location (middle of the domain) lies in a well

monitored region of the network
Visibility of the monitoring network for cases 9-9,12-7 and 13-7
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—| (WResults and discussion

- =» The maxima of s, iIs unique and sharp at position (X,Y,)
@‘”O — lateral direction: 0 < Ay J/x.. < 0.08

— longitudinal direction: 0 < AxJ/x,<0.2

* X, Is placed upstream of the true position, basically because A has been
derived from a Gaussian model with constant mean wind speed, direction and
empirical dispersion parameters

S,y for cases 9-9,12-7 and 13-7
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dConclusions
= The discrete source estimate given by the renormalization technique is
Sy - WEAT(AW AT | with W = diag(w;, W, ..., W)

corresponds with the minimum W-norm solution of the underdetermined linear
inverse problem

=> |t can be expressed by making use of the concept of generalized inverse

+
Syw = AWl

a computationally reliable way to compute the pseudo inverse is by using the
Singular Value Decomposition (SVD)

but a specific algorithm must be used to compute the optimal weight matrix

= Applied to a new KITFOX data set, the source is observed to be distinctly
located and converges onto reasonable estimates

new results needed with a more appropriate dispersion model
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Thank you for your
attention
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