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Chicago and Climate Change

e July 1995 heat wave in Chicago
— Deadliest in American history — 465 deaths
— Record breaking 41.1 °C at Midway Airport

* Chicago Climate Action Plan

— Adaptation for future conditions

* Need a tool that can link climate change to
UHI

— Must capture all the relevant scales of UHI
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Outline

1. Multi-scale modelling approach
2. Model validation
3. Climate-change applications

a) Lake breeze
b) Pedestrian comfort
c) Pollutant dispersion
d) Building energy

4. Conclusions



MULTI-SCALE MODELLING



UNIVERSITY OF
NOTRE DAME

Multi-scale Modelling

 Statistical downscaling

— Faces limitations — past observations and regime
shifts

 Dynamical downscaling
— Requires multi-model chain

— Global to regional to city to micro-scales
- finest scales required for pedestrians and buildings

— Thus far efforts have only covered portion of this
chain

* We seek to bridge all these scales
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Multi-scale Modelling
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Micro-scale Model

 ENVI-met v3.1 developed by Michael Bruse (Bruse and Fleer 1998)
* 3D Reynolds Averaged Navier-Stokes model

— Boussinesq approximation
— k- 1.5 order turbulence closure scheme
* 1D model supplies lateral/upper boundary conditions for 3D model

— Only initial conditions fed by user; thereafter marches forward in time without
further nudging

H__ ] ]
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MODEL VALIDATION
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Mesoscale Model Performance

WRF performance statistics at 8 urban stations

identifier?

RMSE MAE RMSE MAE
m 41.7841, 87.7551 1.27 1.04 1.38 1.16
“ 41.9875, 87.9319 1.78 1.45 1.22 0.99
- 41.9600, 87.7995 2.34 2.00 1.22 1.03
m 41.9483, 87.6586 1.36 1.06 133 1.05
- 41.8238, 87.8485 2.46 2.06 1.06 0.85
- 41.9333, 87.6725 1.25 1.02 1.53 1.07
m 41.8818, 87.6633 1.41 1.09 1.19 0.90
- 41.8325, 87.6949 1.53 1.21 1.57 0.85
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Field Experiment

|
* Field campaign conductéd July 24-August 21, 2013 at

DePaul University k.
* Obtain reliable dataset for validation of ENVI-met in
our model chain

(MS)

Pictured is one tower or uth
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Coupled Model Validation
RMSE (°C) MAE (°C)
August 17-18, 2013 M--—

* bs. WRF Obs. WRF Obs. WREF
* Two sets of initial conditions MSl 1.94 115 1.83 0.86 .784 .909
MC1 120 065 1.04 053 .901 .971
2: ¢  QObservations
sl Obs-initialized
Q23_ —— WRF-initialized
19 \’o

OB 10 12 14 16 18 20 22 00 02 04 06 OB 10 12 14 16 18 20 22 00 02 04 06

Difference measures

O * Root mean square error (RMSE)
° ~__ * Mean average error (MAE)
“~~ ¢ Index of agreement (d)

* values approaching 1.0 = good model
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CLIMATE-CHANGE APPLICATIONS
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Climate-Change Applications

 CAM output averaged over years 2076 to 2081 fed into
WRF

* Average lake-breeze days over entire month of August to
get an average future August lake-breeze day

e provides initial conditions to ENVI-met model

* Take ‘typical’ present-day August lake-breeze conditions
as August 18, 2013

* Based on statistical analysis of meteorological records

 ENVI-met can give finescale results for applications such
as pedestrian comfort and building energy consumption
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Lake Breeze

* Used criteria from Laird et al. (2001) to count lake breeze occurrences
using WRF and observations at A, B, and C on August 15-19, 2013

_ Observed lake breeze

Event Lake breeze No lake breeze

WRF-urban estimated Lake breeze 10 1
lake breeze No lake breeze 0 4

* 100% probability of detection; 20% probability of false detection; 0.07 false

alarm rate
a) Present urban area
Eflﬂ . * .. c ¢ 18°C
. ?"Tﬁ .T?“]:\\ T L e _ warmer
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Pedestrian Comfort

* For thermal comfort mean radiant temperature (MRT) is highly influential

* Use Predicted Mean Vote (PMV) as thermal comfort index (Fangers 1970,
Jendritzky 1990) — depends on temperature, MRT, humidity, and wind speed
but MRT clearly dominates

* On average, 92% of people have discomfort with future outdoor conditions

Future 12:00 MRT °C Future 12:00 PMV
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Pollutant Dispersion

* Pollution from traffic emissions also has major impact on pedestrian comfort
* Particle dispersion in ENVI-met (Bruse 2007)

— ENVI-met uses standard application advection-diffusion equation

— Accounts for particle deposition on vegetation and horizontal surfaces
— Can create sources of particulate emission in domain

 We follow Vos et al. (2012) to simulate traffic emissions of elemental carbon
(EC) EC (ug m3)
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Building Energy

* In Conry et al. (2014), we develops/im_@ouilding energy model
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CONCLUSIONS



Conclusions

* Multi-model chain utilizing dynamical downscaling
developed as comprehensive tool for studying UHI
and climate change

* Coupling mesoscale and microscale can improve
performance at microscales

* Exacerbated UHI and air temperature outweigh
slightly strengthened lake breeze, seriously
threatening sustainability of Chicago
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