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Venkatram, A. (1979): The expected deviation of observed concentrations from predicted 
ensemble means. Atmos. Environ. (11):1547-1549. “…we expect the 1-h averaged 
concentration to deviate from the ensemble mean by more than 100%. …” 
 
Fox, D.G. (1984): Uncertainty in air quality modeling. Bull. Amer. Meteoro. Soc. 
(65):27-36. “…In studies of turbulence, it is convenient to introduce the notion of an 
ensemble, namely a number of repeats of the same ‘experiment,’ holding external 
conditions (boundary and initial conditions) fixed….” 
 
Weil, J.C., R.I. Sykes, and A. Venkatram (1992): Evaluating air-quality models: review 
and outlook. Journal of Applied Meteoro. ((31):1121-1145. “…Air-quality models 
predict the mean concentration for a given set of conditions (i.e., an ensemble), whereas 
observations are individual realizations drawn from the ensemble.” 
 
If arc-maxima differ so greatly from the ensemble maxima, why are we comparing arc-
maxima with dispersion model ensemble-average maxima to assess model performance? 
 
MY VENT:  
You can use a shoe to pound nails into a board. You can even decide which shoes to buy 
based on their ability to pound nails into a board. But shoes were never made to pound 
nails, and their ability to pound nails into a board makes for terrible selection criteria as 
to which shoes to buy!  
 
Dispersion models were never constructed to estimate short-term maxima. You can 
misconstrue what dispersion models do and say they estimate individual realization 
maxima; you can even try to assess dispersion model performance by comparing model 
estimates with individual realization maxima. 
 
It makes no sense to select shoes on their ability to pound nails, nor does it make sense to 
assess dispersion model performance through comparisons of modeling results with 
short-term arc-maxima. 
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Equation Y = 0.94 * X
Number of data points used = 41
R-squared = 0.86
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Equation Y = 0.44 * X
Number of data points used = 41
R-squared = 0.74
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ISCST2 Lateral Dispersion (m)

103

2000

3000

4000

5000

6000

900

800

700

600

500

400

O
b

s
e

rv
e

d
 L

a
te

ra
l 

D
is

p
e

rs
io

n

1.1
1.2

5.2

5.7

6.1
6.2

6.3
6.46.5

5.4

5.5

5.6
4.44.5

4.6

4.7

5.1

2.6

2.72.8

3.1

3.2

3.9

1.3

1.4

1.5

2.12.2

3.3

2.3

2.4

2.5

4.14.24.3

3.6

3.7

3.8

3.4
3.5

5.3

3.11

Equation Y = 2.25 * X
Number of data points used = 42
R-squared = 0.93

EPRI Kincaid  
 
 
 
 
 
 
 
 
Symbol Labels: 
First number refers to arc. I used six Kincaid arcs: 
1=3, 2=5, 3=7, 4=10, 5=15, and 6=20km. 
 
I group the data into 10-value geometric averages, 
going from most unstable to stable. A symbol label of 
1.1 = 3km most unstable group; 3.9 = 7km nearly 
stable group. Open symbols = unstable; solid 
symbols = most neutral/stable. 
 
ISCST3 (v 02035) 
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Notice how the over-estimation of Cy is amplified 
by the under-estimation of Sy, resulting in large 
over-estimates of Cmax. 
 
AERMOD (v 12345) 
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Summary of lessons learned (I hope): 
 
1.  All air-quality models (ISCST3, AERMOD, ADMS, CMAQ, CAMx, etc.) provide 
estimates of the ensemble average concentration. Direct comparisons of short-term (1-
hour or less) observations with modeling results is highly questionable. There are large 
stochastic fluctuations affecting short-term concentration values, which prohibit 
meaningful comparison between modeled ensemble averages with short-term 
concentration values. 
  
2. For dispersion models like AERMOD, I am recommending comparisons of group 
geometric mean values of observed and estimated Cy and Sy values. Once you 
understand what is happening with Cy and Sy, you can look at Cmax. We place too much 
emphasis on the importance of Cmax in our model evaluations; Cmax is dependent upon 
Cy and Sy (not the other way around). 
 
 a. I suggest using log scales on both the x- and y-axis so we can see what is 
happening with the small values, as well as the large values. 
 b. I suggest using an ordinary least-square fit forcing the intercept to be zero, to 
provide a quick overall average assessment of bias, but as you will see, it is not always 
useful.  
 c. I suggest placing the modeled values on the x-axis since ordinary least-square 
fits assume the uncertainty to be in the y-axis values, which in our case are the 
observations, which we know should have larger variances than the deterministic model 
values due to unresolved stochastic processes. 
 c.  I suggest you use labels on the plot symbols. 1, 2, 3, …5 to denote which arc: 1 
= 50m and 5 = 800m. The decimals denote stability, so 1.1 is the 50m arc and the most 
unstable group, and 4.6 is the 800m arc and the most stable group. To further help, I have 
used solid black symbols for the most stable two groups on each arc. 
 
The use of geometric means insures a science basis in the relationship between Cy, Sy 
and Cmax. You should not deviate on this. The use of log scales on x- and y-axis; least-
square fits forcing the intercept to be zero, and labeling the symbols are what I call 
‘good-practices’ developed from experience; trial and error. They are worth using 
initially until we devise something better. 
 
3. It is my contention that there is no science or statistical basis for assessing model 
performance using observed short-term arc-maxima values. You can pound nails with 
shoes to decide which shoes to buy and you can attempt to assess dispersion model 
performance through a comparison of model estimates with observed arc-maxima values.  
 
Neither of these activities makes good sense!  
 
Selecting only the short-term arc-maxima from intensive field data sets for evaluation of 
dispersion model performance makes very poor use of available data and does a poor job 
of revealing the underlying model biases. 



 5

We have not pinpointed what has to be done to 
AERMOD (v12345) to reduce the biases seen in Cy 
and y, but we have clues. 
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The above plots were constructed using the 10-value geometric group averages for the observed 
and AERMOD crosswind integrated concentration values (Cy) and lateral dispersion values 
(y). In defining the 10-value groups, I made no effort to force the stability-ranges to be the 
same for each downwind distance. 
 
The overall bias in Cy is about 1.0 and in y is about 1.10, but the bias in Cy varies by distance 
and the bias in y varies by stability. This shows that to understand the centerline concentration 
values (Cmax) we need to separately understand what is happening with Cy and y. 

 


