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Abstract: 3D models present very promising prospects for simulating the local-scale and high-resolution distribution 
of releases which are potentially dangerous for human health and the environment. To encourage the taking into account 
of their results by the rescue teams and their authorities, it is today very desirable that the concentration or dose maps 
produced by the 3D models also provide information on the uncertainties associated with them. To do so, we developed 
a methodology to accurately estimate the probability of exceeding a concentration threshold in the event of accidental 
or malevolent releases into the atmosphere. This methodology assesses uncertainty with confidence or credible intervals 
using alternatively the frequentist approach and a novel Bayesian approach based on spatial Gaussian processes able to 
lower the limit of significance of the probability estimation. The Bayesian approach was validated on synthetic data, 
then used in the frame of a real situation inspired by the Lubrizol accident in January 2013 in Rouen (France). We show 
that the Bayesian model gives more accurate and narrower than the classical confidence intervals, and is able to lower 
the significance limit of the estimate, thus to draw decision maps which are of real help in view of decision-making. 
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INTRODUCTION 
At the local scale, the flow and dispersion in the atmosphere are strongly influenced not only by the synoptic 
meteorological situation, but also by the details of topography and land-use and the presence of buildings, 
if any. Thus, 3D models are well suited for the assessment of chemical or radiological releases into the air 
that may have consequences on human health and the environment. These models are more and more used 
both for regulatory purposes and emergency preparedness and response. Decision-makers, like operators 
of industrial facilities, civil security officials or public authorities, would be ready to exploit these models 
provided they are embedded in operational decision-support systems. Moreover, the scientific community 
and, increasingly, the users are well aware of the uncertainties on the input data of the models, the models 
themselves and the representativeness of their results. It is therefore highly desirable that part of the research 
on atmospheric dispersion be oriented towards taking uncertainties into account. 
 
In this short paper, we take an interest in a case study inspired by the industrial accident that occurred in 
January 2013, at the Lubrizol chemical plant located in Rouen (France). Operational mistakes and system 
failures in the plant resulted in extended releases of hydrogen sulfide and mercaptan, both of which are 
foul-smelling when they exceed a specified concentration. The features of the incident are very complex in 
several respects, namely the terrain characterized by a rugged topography and alternating industrialized, 
urban and natural areas, the long-lasting and variable kinetics of the releases combined with the highly 
fluctuating meteorological conditions during and after the releases. 
 
We simulated the dispersion of pollutants in the atmosphere using a modeling system whose input data, 
notably meteorological or related to the source term, are extremely uncertain. While epistemic uncertainties 
are not the only ones, taking them into account in a probabilistic framework is absolutely required for 
reliable decision-making (Girard et al., 2020). In this study, our objective was to estimate the probability 
of exceeding a concentration threshold that might represent a certain level of danger in the context of 
atmospheric dispersion. We took a step-by-step approach. We estimated the area where the concentration 
threshold was exceedeed by a unique deterministic simulation. Then, we performed several simulations and 
evaluated point by point the probability of exceedance of the concentration threshold. Then, we tried to 



estimate the confidence and credible intervals associated to a given probability of exceedance. While this 
approach succeeds in accounting for the uncertainties, it highlights the limit of significance. Eventually, to 
lower this limit, we used a credible interval with a conditional spatial independence criterion. 
 
In the short paper, we present the PMSS simulations carried out to create the Lubrizol accident data set, the 
deterministic map of the area where a given concentration threshold is exceeded, the probabilistic decision 
map of the same area and the confidence intervals, our Bayesian approach exploiting the spatial correlation 
of the concentrations, and finally, the results of this approach, which are commented on. 
 
PMSS FLOW AND DISPERSION SIMULATIONS 
The simulations were performed with Parallel-Micro-SWIFT-SPRAY (PMSS). Originally, Micro-SWIFT-
SPRAY (MSS) (Tinarelli et al. ,2013) was developed to provide a simplified but rigorous CFD solution in 
a limited amount of time of the flow and dispersion in built-up environments. MSS combined the high 
resolution local scale versions of SWIFT and SPRAY models. SWIFT is a 3D diagnostic mass-consistent 
model using a terrain-following vertical coordinate. Large-scale meteorological data, local meteorological 
measurements, and analytical results of formulae in building-modified flow areas, if any, are interpolated 
and adjusted to generate 3D wind fields. Turbulent flow parameters are also computed by SWIFT to be 
used by SPRAY. SPRAY is a Lagrangian particle dispersion model able to take into account the presence 
of obstacles. The dispersion of the release is simulated by following the trajectories of a large number of 
numerical particles. Trajectories are obtained by integrating in time the particle velocity, which is the sum 
of a transport component defined by the local averaged wind, generally provided by SWIFT and a stochastic 
component, representing the dispersion due to atmospheric turbulence. 
 
SWIFT and SPRAY handle complex terrains and changing meteorological conditions, as well as specific 
release features, such as heavy or light gases. Recently, SWIFT and SPRAY were parallelized across time, 
space and numerical particles, resulting in the PMSS system (Oldrini et al., 2017). The parallelism was 
shown to be very efficient, both on a multi-core laptop and on clusters of several hundreds of cores in a 
high-performance computing center (Oldrini et al., 2019) (Armand et al., 2021). PMSS was systematically 
validated against experimental wind tunnel and field campaigns for short and extended releases (Trini 
Castelli et al., 2018). In all configurations, the PMSS results complied with the statistical acceptance criteria 
defined by Hanna and Chang (2012) used for validating dispersion models in built-up environments. 
 
DETERMINISTIC DECISION MAP 
We simulated chemical concentrations in the air generated by the accident that happened on January 2013 
at the Lubrizol chemical plant in Rouen (France). Hydrogen sulfide and mercaptan were released from the 
plant stacks throughout the accident. Consequently, thousands of people smelled the chemicals, some of 
them suffering from nausea and headaches. In our study, we considered the 35-kilometer wide square area 
centered on the incident site. The simulation covered a 35-hour period, so that all hazardous materials were 
either deposited or left the simulation domain by the end of the period. The input meteorological data were 
obtained from the community weather reconstruction and forecast meso-scale modelling system WRF 
(Skamarock et al., 2005). The source term was adapted from data established by Ismert and Durif (2014). 
Our objective was to predict whether an arbitrary concentration threshold was exceeded on the studied area 
over the whole period. We chose a threshold value, namely 2 μg.cm-3, to create a fictitious restricted area 
where the population and first responders could be at risk. Figure 1 shows the results of the deterministic 
simulation. Even if this model enables us to make some predictions on the concentrations, it does not take 
account of uncertainty. Yet, the inputs are substantially uncertain, and the results are too. 
 
PROBABILISTIC DECISION MAP AND CONFIDENCE INTERVALS 
Next, we accounted for uncertainty in the input parameters and carried out 100 simulations using PMSS 
with different sets of the wind speed, wind direction, rain intensity, and release rate of the chemical. The 
small sample size is representative of an emergency, for which results must be given as quickly as possible, 
while each simulation requires up to one hour and are run in parallel on suitable computing resources. 
 
  



Let 𝑌(𝑠, 𝑡) be the term of propagation of uncertainty, i.e. the chemical concentration at a given point 𝑠 and 
time 𝑡. In the study, we focus on the maximum temporal concentration at each location throughout the 
simulation 𝑌(𝑠) = sup௧∈[௧బ,௧simu]𝑌(𝑠, 𝑡). Let 𝑋(𝑠, 𝑡) be the random vector of uncertainties, which can contain 
any kind of information, such as the spatial coordinates or distance to the source term or variables like wind 
speed, wind direction, rain intensity or release rate. Denoting the atmospheric dispersion model by 𝑓, we 
wish to assess the distribution of 𝑌(𝑠, 𝑡) = 𝑓൫𝑋(𝑠, 𝑡)൯. Let 𝜁 ∈ ℝା be a concentration threshold and 𝑍(𝑠) =

𝐼{௒(௦)வ఍} a variable worth 1 if the concentration exceeds the concentration threshold at a 𝑠 and 0 otherwise. 
𝑝௑(𝑠) = Pr(𝑌(𝑠) > 𝜁) represents the probability that the concentration at 𝑠 is higher than the concentration 
threshold. 𝑍 follows a Bernoulli distribution of parameter 𝑝௑: 𝑍 ∼ ℬ(𝑝). Let 𝑝௟௜௠ ∈ ℝା be the threshold of 
the probability of exceeding a concentration. We focus on the event {𝑝௑(𝑠) > 𝑝௟௜௠} to make decision. 
 
Let’s now consider independent and identically distributed random variables 𝑍௜(𝑠) {𝑖 = 0 … 𝑛} that follow a 
Bernoulli distribution of parameter 𝑝௑(𝑠). Let 𝑆௡(𝑠) = ∑ 𝑍௜

௡
௜ୀଵ (𝑠) ∼ ℬ൫𝑛, 𝑝௑(𝑠)൯ be the number of times the 

concentration at 𝑠 exceeds the threshold or the binomial distribution with parameters 𝑛 and 𝑝௑(𝑠). In a 
previous work (Girard et al., 2020), we estimated 𝑝௑(𝑠) with the sample mean estimator 𝑃෠௡(𝑠) = 𝑆௡ 𝑛⁄ . 
Figure 2 shows the estimated probabilities of exceeding the chosen threshold concentration of 2 μg.cm-3. 
Colors indicate the probability from 0 (yellow) to 1 (black). 
 
Unfortunately, a decision based on a point estimator does not inform us about the estimation uncertainty, 
contrary to credible and confidence intervals (N.B. credible intervals account for an actual observed sample, 
here dispersion simulations, which is not the case for confidence intervals). These intervals set limits to 
𝑝௑(𝑠) thanks to two estimators, the lower and upper bounds of the interval 𝐿௑(𝑆௡(𝑠), 𝛼) and 𝑈௑(𝑆௡(𝑠), 𝛼). 
Let 𝐼௑(𝑛, 𝑠, 𝛼) be a confidence or credible interval which contains 𝑝௑(𝑠) with a confidence level of 1 − 𝛼, 
with 𝛼 the risk accepted to be as low as possible. The actual coverage probability at a fixed value of 𝑝௑ is 
an estimate of the probability that the interval actually contains 𝑝௑. A conservative interval has its actual 
coverage probability greater or equal to the nominal confidence level 1 − 𝛼. Conversely, a mean correct 
interval has a mean coverage probability of at least 1 − 𝛼, but its actual coverage probability is lower for 
extreme values of 𝑝௑, close to 0 or 1. In this study, we focused on mean correct intervals, as they are 
narrower than conservative ones. For 𝑛 ≥ 40, Brown et al. (2001) recommend the adjusted Wald interval, 
also called Add 4 (Agresti and Coull, 1998). A confidence or credible interval is divided into three zones, 
each one with a different decision-making. Figure 3 shows examples of these maps: 

• In the red area where the lower bound of the interval is greater than 𝑝௟௜௠, there is strong evidence 
that we exceed the critical level at location 𝑠. 

• In the white area where the upper bound of the interval is lower than 𝑝௟௜௠, there is strong evidence 
that we are below the critical level at location 𝑠. 

• In the grey area where 𝑝௟௜௠ is enclosed by the interval bounds, it is not easy to compare 𝑝௑ and 
𝑝௟௜௠ and the result is non significant. 

The left and right decision maps on Figure 3 are computed with the same data and parameters, except for 
the probability threshold 𝑝௟௜௠. It illustrates the loss of significativity phenomenon: when 𝑝௟௜௠ goes under a 
certain value (dependent on sample size and confidence level), the map becomes useless to the decider! 
 

 
Figure 1. Concentration map of the chemical  

with a given concentration threshold. 

 
Figure 2. Probability of  

exceeding the concentration  
threshold with the sample mean. 

 
Figure 3. Decision maps accounting for credible intervals computed  
with the same parameters, except for the probability threshold 𝐩𝐥𝐢𝐦  

going from 5% (left) to 4% (right). 
 

 



INTRODUCING SPATIAL CORRELATION IN THE BAYESIAN APPROACH 
In the previous model, the n-sample 𝑍ଵ(𝑠), . . . , 𝑍௡(𝑠) of 𝑍(𝑠) was supposed to be independent for every 
location 𝑠 ∈ ℝଶ and the spatial structure of the data was ignored. However, any geostatistical data have a 
continuously varying response in space. Therefore, the information in location 𝑠 may help improving the 
estimations in nearby points 𝑠 + ℎ. From now on, let’s consider Bayesian statistics, where the parameter 𝑝௑ 
becomes the random variable 𝑃௑, and the hierarchical model inspired from Diggle and Ribeiro (2007): 
 

𝑆௡(𝑠) | 𝑃௑(𝑠) =  ∑ 𝑍௜(𝑠)௡
௜ୀଵ  | 𝑃௑(𝑠) ∼ ℬ൫𝑛, 𝑝௑(𝑠)൯    (1) 

𝑙𝑜𝑔𝑖𝑡൫𝑃௑(𝑠)൯ | 𝛽, 𝜏, 𝜆 ∼ GaussianProcess ൬𝑋்(𝑠) 𝛽, 𝛾(ℎ) = 𝜏 𝑒𝑥𝑝 ቀ−
‖௛‖

ఒ
ቁ൰  (2) 

with 𝑋(𝑠) the design matrix, 𝛽 a mean parameter, 𝜏 a variance parameter, and 𝜆 a scale parameter. Equation 
(1) assumes the conditional independence of 𝑆௡(𝑠) which is the number of times the concentration threshold 
is exceeded at location 𝑠. A spatial Gaussian process {𝑆𝐺𝑃(𝑠): 𝑠 ∈ ℝଶ} is a stochastic process of which the 
joint distribution 𝑆𝐺𝑃 = {𝑆𝐺𝑃(𝑠ଵ) …  𝑆𝐺𝑃(𝑠௄)} is multivariate normal for every set of positions {𝑠ଵ … 𝑠௄} with 
𝑠௝ ∈ ℝଶ. Any such process is completely defined by its mean function 𝜇(𝑠) = 𝔼[𝑆𝐺𝑃(𝑠)], and its covariance 
function 𝛾(𝑠, 𝑠ᇱ) = cov൫𝑆𝐺𝑃(𝑠), 𝑆𝐺𝑃(𝑠ᇱ)൯. 
 
For a set of positions {𝑠ଵ … 𝑠௄}, let’s define the isotropic spatial Gaussian process 𝑆𝐺𝑃௑ as this: 
 

𝑆𝐺𝑃௑ = {𝑆𝐺𝑃௑(𝑠ଵ) … 𝑆𝐺𝑃௑(𝑠௄)} = ൛𝑙𝑜𝑔𝑖𝑡൫𝑃௑(𝑠ଵ)൯ … 𝑙𝑜𝑔𝑖𝑡൫𝑃௑(𝑠௄)൯ൟ ∼ 𝒩௄(𝜇, Σ)  (3) 
 

with the K-dimensional mean vector 𝜇 = ቀ𝜇൫𝑠௝൯ቁ
௝ୀଵ

௄
= ൫𝑋்൫𝑠௝൯𝛽൯

௝ୀଵ

௄
= 𝑋்𝛽, 

and the 𝐾x𝐾-dimensional matrix 𝛴 such that 𝛴௜௝ = 𝛾൫𝑠௜ , 𝑠௝൯ = 𝜏𝑒𝑥𝑝 ቀ−
ฮ௦೔ି௦ೕฮ

ఒ
ቁ. 

 
The covariance function 𝛾: ℝଶ × ℝଶ → [0, 𝜏] is negligible with respect to 𝜏 at a distance of more than 3𝜆. 
The design matrix is 𝑋(𝑠) = [1 𝑋(ଵ)(𝑠) 𝑋(ଶ)(𝑠) 𝑋(ଷ)(𝑠)]் with the explanatory variables being 𝑋(ଵ)(𝑠) 
the y-coordinate, 𝑋(ଶ)(𝑠) the x-coordinate, and 𝑋(ଷ)(𝑠) the distance to the source term. 
 
Prior distributions encode our initial knowledge about the parameters of the model. As the parameters 
(𝛽௜)௜∈⟦ଵ,ସ⟧ can take any value in ℝ, we choose a normal distribution a priori: ∀𝑖 ∈ ⟦1, 4⟧ 𝛽௜ ∼ 𝒩൫𝜇ఉ೔

, 𝜎ఉ೔

ଶ ൯. As 
the parameter 𝜏 is the variance of 𝑆𝐺𝑃௑(s) for any location, we choose an inverse gamma distribution 
because it is defined on ℝା and induces conjugate distributions: 𝜏 ∼ InvGamma(𝛿ఛ , 𝜙ఛ). As the parameter 𝜆 
must be strictly positive, we choose a gamma distribution a priori: 𝜆 ∼ 𝛤(𝑘ఒ, 𝜃ఒ). 
 
To build the posterior distribution of {𝑃൫𝑠௝൯: 𝑗 ∈ ⟦1, 𝐾⟧} from 𝑛 observations of 𝑍൫𝑠௝൯, we use Monte Carlo 
Markov chains whose stationary distribution corresponds to the posterior distribution in Bayesian statistics. 
Except for 𝜏 which is an inverse gamma distribution, the posterior distributions of 𝛽௜, 𝜆 and 𝑆𝐺𝑃௑൫𝑠௝൯ are 
constructed using the Metropolis-Hastings algorithm within a Gibbs sampler (Geman and Geman, 1984). 
Finally, we built a Markov chain for 𝛽, 𝜏, 𝜆 and 𝑆𝐺𝑃௑൫𝑠௝൯, that is to say a chain of dimension 𝑙𝑒𝑛𝑏𝑒𝑡𝑎 (the 
dimension of 𝛽) + 2 + K (the number of points of the map). 
 
RESULTS OF THE BAYESIAN APPROACH AND DISCUSSION 
 
Application and validation of the spatial Gaussian process 
First, the method was tested on simulated data to ensure the existence of the parameters 𝛽௧௥௨௘, 𝜏௧௥௨௘ and 
𝜆௧௥௨௘, which we tried to retrieve. We generated a simulation 𝑆𝐺𝑃௑

simu of the spatial Gaussian process 𝑆𝐺𝑃௑ ∼

𝒩൫𝑋்𝛽௧௥௨௘ , 𝛴(𝜏௧௥௨௘ , 𝜆௧௥௨௘)൯. 𝑆𝐺𝑃௑ is a vector of dimension 𝐾, which we can represent as an exceedance 
probability map of dimension √𝐾 × √𝐾 by applying to it the expit function which sends ℝ to [0,1]. Thus, 
we used this realization to simulate 𝑆௡

simu(𝑠) ∼ ℬ(𝑛, 𝑃௑
simu(𝑠) = 𝑒𝑥𝑝𝑖𝑡 ቀ𝑆𝐺𝑃௑

simu(𝑠)ቁ. 

 
We assigned fictive values to the parameters (𝛽௧௥௨௘ = [−8 ,0.2 ,0.2 , −0.3], 𝜏௧௥௨௘ = 1, 𝜆௧௥௨௘ = 1, and 𝑛 = 100) 
to assess the model and considered uninformative or low-informative prior distributions as follows: 

∀𝑖 ∈ ⟦1, 4⟧ 𝛽௜ ∼ 𝒩൫𝜇ఉ೔
= 0, 𝜎ఉ೔

ଶ = 100൯, 𝜏 ∼ InvGamma(𝛿ఛ = 1, 𝜙ఛ = 1), and 𝜆 ∼ 𝛤(𝑘ఒ = 2, 𝜃ఒ = 0.5) 



 
Figure 4 shows a realization of this process used as the target for the probability estimation algorithm. 
 
In the next step, 𝛽௜ were randomly initialized between −1 and 1. We arbitrarily initialized 𝜏 at 1 because it 
is the order of magnitude of the parameters that interest us: 𝜏 ≤ 0.1 is almost trivial and 𝜏 ≥ 10 renders very 
unstructured, white noise type maps. We also arbitrarily initialized 𝜆 at 1 so that it adapts to the size of the 
map. Expert knowledge could allow a better initialization on real data. Since we suspect that the true value 
of 𝑆 is around the sample mean, we initiliazed 𝑆𝐺𝑃௑൫𝑠௝൯ at its sample mean. We fixed the variances of the 
proposal kernels to have an acceptance rate close to 0.234. 
 
Markov chains (not presented in this short paper) of the MCMC algorithm were output for 10,000 iterations, 
removing the first 2,000 terms, notably the burning period, as well as one term out of two to reduce the 
temporal dependence of the chain. The MCMC algorithm has good mixing properties, since the output 
Markov chains look like a Gaussian noise. All the chains are centered on their true parameters: 𝛽௠௘௔௡ =
[−7.95, 0.20, 0.21, −0.31], 𝜏௠௘௔௡ = 1.06, and 𝜆௠௘௔௡ = 1.03. As expected, 𝜏 and 𝜆 are highly correlated. 
 
Performances of the Bayesian method 
While the Bayesian approach slightly improves point estimation, its main interest lies in interval estimation. 
To compare the Bayesian and Add 4 intervals, we generated 1,000 maps of size 10 x 10, thus a total of 
100,000 different locations and we drew 𝑛 = 100 realizations of ℬ൫𝑃(𝑠)൯. From this sample, we estimated 
the uncertainty on 𝑃௑(𝑠) by building Bayesian and Add 4 credible intervals for each location. We could 
then compute the average coverage probability by assessing how many intervals contained the actual value 
𝑃௑(𝑠) among the 100,000 different locations. Table 1 compares the performances of the Bayesian and Add 
4 intervals, computed with the test case illustrated in Figure 4. With smaller average coverage probability, 
Bayesian intervals are slightly less conservative, but they achieve significantly smaller expected widths 
(20% on average) than those computed with the Add 4 method, which make them an attractive choice. 
 

Table 1. Average coverage probability and expected width of the Bayesian and the Add 4 intervals. 

Interval Average coverage probability Expected width 
Bayesian at 95% 94.3% ± (8.2% x 10-2) (1.29 x 10-1) ± (5.9 x 10-4) 
Bayesian at 99% 98.3% ± (4.4% x 10-2) (1.64 x 10-1) ± (7.5 x 10-4) 

Add 4 at 95% 95.6% ± (6.6% x 10-2) (1.55 x 10-1) ± (5.0 x 10-4) 
Add 4 at 99% 99.2% ± (2.9% x 10-2) (2.04 x 10-1) ± (6.6 x 10-4) 

 
Bayesian intervals as part of a decision making process 
Bayesian intervals bring two improvements when drawing decision maps as those on Figure 3: 

• It reduces the width of the gray zone of a significant amount. 
• It counteracts the loss of significativity by preventing the grey zone to spread when considering 

small probability threshold or small risk, what is the main interest of our Bayesian estimator. 
Figure 5 shows the decision maps drawn with the Add 4 confidence interval and our Bayesian hierarchical 
model for the Lubrizol data set. It illustrates the capacity of the Bayesian estimator to be robust against loss 
of significativity and produce a map that, unlike the Add 4 interval, is actually usable by decision-makers. 
 

 
Figure 4. Target probability map 

generated for testing  
the Bayesian algorithm. 

 
Figure 5. Decision maps obtained with the Add4 interval (left)  

and the Bayesian estimators (right). 



Computational times 
Computational times on an Intel Core i7-10810U processor with a speed between 1.1 GHz and 4.9 GHz are 
given in Table 2 for different numbers of locations 𝐾 and 10,000 MCMC iterations. The MCMC algorithm 
is very time-consuming and the main limitation in the implementation of the Bayesian hierarchical model 
in comparison with the Add 4 method. 
 

Table 2. Computational time depending on the number of locations 𝐊 and for 𝐍chain = 𝟏𝟎, 𝟎𝟎𝟎 iterations. 

Number of locations MCMC computation time Add 4 computation time 
25 9 s 0.01 s 

900 28 min 7 s 0.11 s 
2,500 12 h 48 min 1 s 0.22 s 

 
CONCLUSION 
In this short paper, we compare two different strategies for building decision maps from interval estimation 
of the probability of exceeding a concentration threshold: the classical frequentist approach and a novel 
Bayesian approach. This is a step forward decision maps built-up from point estimation of the exceedance 
probabilities presented in Girard et al. (2020). The Bayesian approach is extensively tested with synthetic 
data and applied to a case study inspired by the Lubrizol accident in January 2013 in Rouen (France). 
 
While confidence or credible intervals are associated with a controllable nominal risk and extremely useful 
to construct decision maps, they have a limit of significance. Indeed, when the sample size, the accepted 
risk and/or the probability threshold become small, the decision map may be of no use to make decisions. 
To solve this problem, we implemented a Bayesian hierarchical model based on spatial Gaussian processes 
to encode the spatial dependence of the probabilities of exceeding a concentration threshold between nearby 
points in the probabilistic model. We showed on simulated data that the Bayesian model was more accurate 
and narrower than the Add 4 confidence intervals, and able to lower the significance limit of the estimate, 
thus to draw informative decision maps when Add 4 was of no help for this. However, the computational 
time of the Bayesian model was much longer than Add 4, especially for a large number of points on maps. 
 
To the best of our knowledge, this is the first time that a scientifically reliable method has the potential to 
provide information in emergency involving atmospheric releases on the confidence level of concentration 
maps. In the future, we plan to reduce the computational time of the Bayesian model by running iterations 
of the MCMC algorithm simultaneously and making points absolutely independent after a certain distance. 
We also plan to transform our decision method into an interactive and user-friendly tool that could help 
better grasp the concept of estimation uncertainty on decision maps. 
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