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Abstract:
Past large-scale fires in urban areas have highlighted the need to develop means of assessing the risks posed by

smoke plumes to the population and the environment. One of the challenges is to quickly provide the authorities with
information on the areas impacted by the plume and the pollutant concentration levels to which people may have
been exposed. We present in this work the development of inverse modelling methods to retrieve the source term
of a large-scale fire by assimilation of in-situ pollutant concentration measurements. A semi-Bayesian method and a
MarkovChainMonteCarlo (MCMC) Bayesianmethod are considered for the characterisation of the source, noticeably
the emission height, linked to the plume rise phenomenon, which is an important parameter to assess the impact
in the fire vicinity. These inverse methods are applied within an Observing System Simulation Experiment (OSSE)
corresponding to the Notre-Dame Cathedral fire in 2019 and a real case study corresponding to a large warehouse
fire that occurred in Aubervilliers near Paris in 2021.
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Introduction

Large-scale fires in France, such as the recent fires in 2019 at the Lubrizol company warehouse and at
Notre-Dame de Paris cathedral, have highlighted the need to develop means to estimate the health and
environmental risks associated with this type of accident (van Geen et al., 2020). If measurements of con-
centrations in the atmosphere are available, it becomes interesting to use an inverse modelling method
based on the joint use of these measurements and a dispersion model to characterise the source term.
This approach has been widely used at large scale (for example in Winiarek et al., 2012), and, to a lesser
extent at urban scale (Nguyen and Soulhac, 2016; Tilloy et al., 2013) but had little application to the dis-
persion of a smoke plume in a floating release situation.

In the Paris urban area, the Laboratoire Central de la Préfecture de Police (LCPP) aims to deploy a
number of devices for measuring pollutants and tracers of combustion smoke during a fire. The focus is
on estimating the pollution to which the population are likely to be or have been exposed. Subsequently,
the application of an atmospheric dispersion model within the framework of a data assimilation system
should provide a source characterisation and a finer estimate of the concentration levels at locations of
interest. The dispersion model used is the Parallel Micro Swift Spray (PMSS) model developed by Aria
Technologies. This is a suite of models where the Swift model first diagnoses the atmospheric flow taking
as input data meteorological database from the AROME model of Météo-France at ∼2.5 km resolution,
a topography database of the National Institute of Geographic and Forest Information (IGN), and the
CORINE Land Cover (CLC) database. Next, the Spray model uses the output data of the Swift model
and descriptive parameters of the smoke source to perform the computation of the concentration and
deposition fields with a Lagrangian approach where each particle represents a fixed amount of pollutant
mass.



Methodology

The inverse methods applied to retrieve the smoke source term parameters are i) maximum a posteriori
(MAP) under positive constraint and parametric estimation by Generalised Crossed Validation (GCV) and
ii) a Bayesian samplingmethod relying on theMarkov ChainMonte Carlo (MCMC) algorithm to retrieve the
probability density functions associated to the parameters. The inversion procedure is carried out first
by a direct modelling of the atmospheric dispersion of pollutants to construct the H (source-receptor)
matrix describing the relationship, assumed to be linear, between theNobs observed concentrations and
the Npar inverted source term parameters, and secondly by applying a parametrisation to the inverse
methods implemented (Carrassi et al., 2022). In our case, both methods are related to Bayes’ formula
(1) with x ∈ RNpar the set of variables of interest that characterise the source and y ∈ RNobs the set of
available observations:

p(x|y)︸ ︷︷ ︸
a posteriori

=

likelihood︷ ︸︸ ︷
p(y|x)

a priori︷︸︸︷
p(x)

p(y)︸︷︷︸
evidence

. (1)

A link between the two methods exists by considering Gaussian probability distributions to describe
the prior (2a) and the likelihood (2b):
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and by minimising only over the variable x, with R = r IdNobs the covariance matrix linked to the model
error, B = b IdNpar the covariance matrix linked to the prior error, and xb ∈ RNpar the source term
estimation. With the semi-Bayesian approach, the objective is to find the maximum probability of the
a posteriori which corresponds to the minimum with respect to x of the deterministic cost function (3)
(Hansen, 2010):

J (x) = (y− Hx)⊤(y− Hx) + λ2(x− xb)⊤(x− xb), (3)

where λ is determined through the Generalised Cross Validation method. The Limited-Memory Broyden–
Fletcher–Goldfarb–Shanno with boundaries algorithm (L-BFGS-B) is used to solve the problem by gradient
descent. The positive constraint of the source term is enforced through the bounds.

With the Bayesian approach, the objective is to reconstruct the a posteriori distribution by Monte
Carlo sampling using the popular Metropolis-Hastings algorithm (Hastings, 1970). For a number of itera-
tions, several states x are proposed, and are either accepted or rejected given a random component, a
transition probability between the states and the detailed-balance principle (4):

Py(xnew|xold)Py(xold) = Py(xold|xnew)Py(xnew). (4)

To ensure the positivity of the source term, a folded-normal distribution is considered for the transition
probability. The resulting Markov chain consists of all the accepted states and allows to sample from the
target distribution Py: x → p(x|y).

Synthetic case: application to Notre-Dame de Paris cathedral 2019 fire

A first application is considered in order to validate the implementation of the inverse methods and to
have a first view of the inversion results in a case where the synthetic observations approximate the real
conditions to which the investigation teams would have been subjected. In Paris, Notre-Dame Cathedral
caught fire on April 15, 2019 around 17:00 UTC. The fire caused significant particulate pollution on an
urban scale due to the lead contained in the built structure (Vallée et al., 2021). A study made by the
National Institute of Risks (INERIS) considers two sources: the Cathedral spire which burned during the
first hour and the frame during the three hours of the fire’s fully developed phase (INERIS, 2019). Four



tracers are considered to represent different sizes of lead monoxide particles (with aerodynamic diam-
eter of 1.5, 15, 30 and 50µm) for a total of 138 kg of lead monoxide emitted during the fire. The source
term considered is defined according to the fully developed phase of the fire, the sources (frame, spire)
and a particle size distribution. Due to the lack of measurements during the fire, synthetic observations
are generated corresponding to an operational situation of teams deployment on site: measurements
done between 1 km and tens of kilometres from the source in the wind direction and considering time
deployment of the teams. The meteorological analyses and the source term formulated in the INERIS re-
port are used to construct these observations. The meteorological forecasts are considered to build the
Hmatrix via direct modelling. The discrepancies between meteorological forecasts and analyses allow to
generate a typical model error within the inverse problem. Both MAP under positive constraint method
andMCMCMetropolis-Hastings algorithmwere used to perform a sensitivity analysis to the configuration
of the inversion.

scenario description MNGE

sampling strategy
fixed location, full temporal coverage 0.82
variable location, full temporal coverage 0.59

a priori
null 0.59
uniform emission rate (5 kg/h) 0.45
INERIS source term 0.26

Table 1: MAP results of the sensitivity study, usingmeteorological analyses to generate synthetic observations. MNGE
is themean normalised gross error between the inverted source term parameters and the INERIS estimate. The scores
provided concern the PbOd15. The sampling strategy sensitivity study assumes a null a priori. The a priori sensitivity
study assumes a variable location and full temporal coverage sampling strategy.

Firstly, the sensitivity study compares a fixed location sampling strategy (on the Eiffel Tower) to a mo-
bile location sampling strategy (relay of two teams). As a result, sampling strategy with spatio-temporal
coverage helps to get closer to the expected solution (Table 1). Indeed, more information is provided
through the observation by the variable location and full temporal coverage strategy than the fixed loca-
tion. Secondly and unsurprisingly, knowledge, even partial, of the prior gives better scores on the statisti-
cal indicators for error (Table 1). The weighting of the prior is driven by the lambda estimate (via the GCV)
which gives it sufficient importance to be sensitive. Additionally, a small change in wind direction caused
a typical inverse modelling error also visible through the largely positive MNGE statistical indicator.

Real case: application to a large warehouse fire in Aubervilliers, near Paris

A second application is considered: the fire of a tool warehouse that took place on April 16, 2021 in
Aubervilliers, near Paris (Figure (1a)). The fire started around 3:30 UTC, and the times of the different

(a)
(b)

Figure 1: Information on Aubervilliers’s fire. (1a) Photo of the Aubervilliers warehouse smoke plume on April 16, 2021.
Source: Internet. (1b)Observation map: fire (in red), distribution of PM measurement points carried out by the LCPP
(in green), Airparif stations (in blue), andmeasurement points with an abnormal PM10 concentration peak (in orange).



phases of this fire were assessed after discussion with the firefighters and study of drone images taken
during the fire. It is estimated that the fire experienced its fully developed phase between 4:30 UTC and
6:30 UTC, was brought under control around 7:30 UTC, and was contained by 8:30 UTC. A first approxi-
mation of the source term is made by estimating the heat release rate (HRR) from these indications. An
initial estimate of the emission height is based on photos and information given by the firefighters. Thus,
five heights are sampled from 100m to 500m. The observations are provided by ten AirParif measure-
ment stations located in and near Paris. Among these stations (Figure (1b)) five detected an abnormal
concentration of PM10 (greater than 120µg.m−3) during the fire.

The MCMC method is used to reconstruct the a posteriori distribution for this case, giving an evalu-
ation of the uncertainties. For now, a choice is made on r and b through the results given by the GCV
estimation (used with the MAP method): λ = 0.217, and λ2 = r/b. Thus, in the following we will as-
sume b = 10 and r = 0.47. With the same configurations, both MAP under positive constraint and MCMC
method tend to find similar kinetics of the fire for this case. Indeed, the first results show a temporal
evolution of the intensity release with a peak for the third hour of the fire which is consistent with the
source term estimation: themaximum rate is found in the predominant hour of the fully developed phase
of the fire.

Due to the empirical and deterministic choice of the parameter r linked to the model error and indi-
rectly to the prior error, a sensitivity study to the a priori was carried out. As a result, the releases at the
400m and 500m emission heights appear very sensitive to the prior (Figure 2) and cannot be considered
as a robust solution to the inverse problem. In contrast, the 300m emission height stands out from the
other which is consistent with smoke plume visual estimations. Indeed, the intensity release for the 300m
emission height is significantly greater than the 100m and 200m emission heights and also stands apart
from the prior. However, the retrieved intensity release for the 300m emission height still depends on it.
An improvement of the MCMCmethod by considering a stochastic estimation of r, avoiding an arbitrary
choice, would yield a more robust estimation of the release intensity.

(a) MCMC results assuming a 100 kg/h uniform emission
rate for the a priori.

(b) MCMC results assuming a 200 kg/h uniform emission
rate for the a priori.

Figure 2: MCMC’s resulting a posteriori distribution for emission rate in kg/h between 5:30 UTC and 6:30 UTC and for
five emission heights.

It is also possible (and recommended) to take into account the background component of the ob-
served concentrations in the inversion. We can even distinguish this contribution, due to all other sources
besides the fire, depending onwhether the observations sites are representative of the urban background
concentrations or of traffic proximity concentrations. The first results of background concentrations in-
version obtained with the MAP method (∼ 34µg.m−3 for traffic stations and ∼ 25µg.m−3 for urban
background stations) are consistent with the observed conditions of the day and the usual background
estimates made by AirParif (∼ 20µg.m−3 and∼ 15µg.m−3 respectively).



Conclusions

Two inverse methods have been implemented in order to characterise the intensity of the release and
the emission height of smoke in case of large-scale fires.

The implementation of the maximum a posteriori under positive constraint and Markov Chain Monte
Carlo methods have been validated on the synthetic case of the Notre-Dame de Paris fire. In the case
of a real fire, the MCMC method provides releases estimates consistent with the source term derived in
previous situations (Alp and Michalowicz, 2005; Daly et al., 2012) and with an estimate of the source term
(via data transmitted by the firefighters). Also, the background concentrations can be taken into account
within the inversion problem and coincides with the expected values.

For the MCMC method, the r parameter drives the uncertainties linked to the solution. More rigor-
ously, the hyperparameter r can be incorporated into the MCMC algorithm in order to be estimated in
the inversion process (Dumont Le Brazidec et al., 2021). This improvement of the implemented algorithm
will be the next step in this work. The use of distributions other than Gaussian for the likelihood and the a
priori is a perspective as well. For instance, the ability of log-normal statistics to process positive variables
of significantly different magnitudes is a major asset.
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