Evaluation of a military CBRN-hazard prediction procedure with a Lagrangian dispersion model

Tristan Carion, Andy Delcloo, Bart Janssens

September 2022

Context

- Improve risk assessment in case of CBRN incidents (Chemical, Biological, Radiological, Nuclear)
- Atmospheric dispersion models can predict hazardous species concentration
- Event-based simulation to couple concentration predictions with population density, topography etc.
- Quantify the uncertainty

Web Application

We want:

- Quick and user-friendly results
- Fast access to meteorological data
- Dispersion models anywhere on the globe

Solution:

- Web app on the European Weather Cloud
- Rest API with julia
- Multiple dispersion models implemented

Dispersion models

Two models are currently implemented

ATP-45 (simplified version)

- NATO hazard predictions in case of CBRN
- Defines geospatial shapes representing the hazard zones (valid for 2 hours).
- Different shapes for low and high wind speed.

Wind speed < 10km/h

Wind speed > 10km/h

FLEXPART

- Comprehensive Lagrangian dispersion model
- Spatial distribution of the concentration at multiple levels

ATP-45 vs Flexpart

	Pro	Cons
ATP-45	 Few meteorological and input data required Very easy and quick to run 	 Very limited precision of the prediction
Flexpart	 Precise idea of spatial and temporal behaviour of the plume 	 Many meteo fields required (long retrieval time)
		 Time consuming simulations
ATP-45 whe	n very quick assessment is needed	
Flexpart wh	en more precise assessment is needed	
Can we im	orove future ATP-45 predictions by pre	vious evaluations with Flexpart

(i.e. making a surrogate model)?

The Suffield campaign

- Experimental campaign for detection of CBRN agents in atmosphere
- Short-time releases (median ≈ 1 minutes)
- About 150 releases analyzed

Evaluation process

Overlap coefficient:

Exit time:

Plume footprints

Overlap coefficients

Exit time vs wind speed (1)

- Correlation between wind speed and exit time
- Plumes exit before ATP45 validity

Exit time vs wind speed (2)

Concentration at exit

- Max concentration at exit time divided by the total mass released
- Higher concentration when stable conditions
- Improve the prediction if the release quantity and the stability is known.

Final discussion

Conclusions:

- Improve risk assessment when wind velocity is known
- Most of the time, the plume exits before end of validity
- Concentration predictions if more information about release conditions

Limitations:

- Valid for short releases (when the exit time makes sense)
- Only for open and flat terrain
- Not many cases at low wind speed
- Not every stability classes covered
- Dataset quite limited

Further steps:

- Randomly generated releases (random release location and mass)
- Define other metrics (i.e. the false alarm: $\frac{(FP(t) \cap ATP)^c}{ATP}$)
- Use more detailed ATP-45 models
- Influence of more detailed atmosphere characteristics (ex: Monin-Obukhov length)
- Machine learning for automated surrogate model

Additional remark

Multiple packages developed (https://github.com/tcarion) :

- EcRequests.jl: call to the ECMWF web API in Julia
- **GRIBDatasets.jl**: high level interface to GRIB files
- ATP45.jl
- GaussianDispersion.jl
- Flexpart.jl:

```
using Pkg; Pkg.add(["Flexpart", "Rasters", "Plots"])
1
  using Flexpart, Rasters, Plots
2
3
  FlexpartDir() do fpdir
4
      Flexpart.default run(fpdir)
5
      output file = first(OutputFiles(fpdir))
6
      output = Raster(string(output file), name = :spec001 mr)
7
      plot(output[Ti = 2, height = 1, pointspec = 1, nageclass = 1])
8
9
  end
```


Final slide

Thank you very much for your attention! tristan.carion@mil.be