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Abstract: A range of situations exist in both the regulatory and emergency response fields in which it is desirable to 

be able to determine the location and nature of an emission into the atmosphere.  The development of methods to 

address this problem is known as inverse dispersion modelling or source term estimation (STE). Given the potential 

value of being able to identify and characterize sources so that the hazard they pose to populations can be determined, 

considerable research effort has been dedicated to the development of STE algorithms.  

 

In this work we have sought to exploit the strengths of two separate algorithms to provide a more effective overall 

STE system.  Bayesian numerical methods can provide high resolution probabilistic source term estimates that 

account for sources of uncertainty in the data, model and environment. However, their real-time application is 

potentially limited by demanding computational requirements. Reducing the computational time for Bayesian STE is 

therefore critical particularly for urban scenarios, where more complex dispersion modelling is required to improve 

accuracy.  

 

In contrast to Bayesian methods, adjoint-based methods are relatively quick-to-compute source term estimation 

algorithms. For example, the Variational Iterative Refinement Source term estimation Algorithm (VIRSA) method 

provides prompt approximations for release location, time and mass. As with Bayesian algorithms, VIRSA is data-

driven; the parameters of interest are optimised to minimise the discrepancy between observed and simulated 

observations, as quantified by a (least-squares) cost function.  The output of VIRSA is thus a point estimate 

representing the source term that provides the best fit to the data. 

 

A novel model combination algorithm has been implemented that allows the Bayesian algorithm to take and refine 

VIRSA solutions in order to produce fully probabilistic estimates for the source term and hazard and benefits.  

Execution time benefits of the Bayesian inference are linked to accuracy of VIRSA solutions. 
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INTRODUCTION 

Hazardous substances released into the atmosphere pose both an immediate and delayed risk to human 

health. In the event of such a release it is necessary to predict where the material will disperse and 

deposit, as this will enable the first responder to undertake appropriate mitigation strategies. Atmospheric 

dispersion models are run forward in time to generate hazard predictions, but these require complete and 

precise knowledge of the release, or source term, parameters that characterise the type of release and the 

conditions under which it is made. In many situations, however, the source term is not known well and 

must be inferred from, for example, sensor measurements in the field. Source term estimation is therefore 

a classic inverse problem, but one in which there are often strong time and data constraints.  

 

Bayesian approaches have been widely used to solve the source term estimation problem (e.g., Delle 

Monache  et al., 2008; Robins et al., 2009; Yee, 2012), since they account for sources of uncertainty in 

the data, model and environment (Kennedy & O’Hagan, 2001; Chkrebtii et al. 2013). The real-time 

application of Bayesian methods to STE is currently limited, however, by demanding computational 

requirements due to expensive likelihood calculations. Conversly, adjoint-based methods (e.g., Sykes et 

al. 2008, Annunzio et al. 2012, Bieringer et al. 2015), which return point estimates for the release 

parameters, can be computed in quick time, but do not enable uncertainties to be reflected in resulting 

hazard predictions. 
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This paper describes an approach for combining an adjoint-based STE method with a Bayesian STE 

algorithm to reduce the computation time of the Bayesian inference. 

 

Bayesian STE 

A Bayesian approach to STE produces a posterior probability distribution for the source term parameters, 

𝜃, based on readings received from sensors, 𝐃. Using Bayes’ rule, the posterior distribution, indicating 

how likely the source term parameters are given the data, is calculated as: 

𝑃(𝜃|𝐃) =
𝑃(𝜃)𝑃(𝐃|𝜃)

∫ 𝑃(𝜃)𝑃(𝐃|𝜃)d𝜃
 (1) 

A more common representation of Bayes’ theorem is:  

𝑝(𝜃|𝐃) ∝ 𝑝(𝜃)𝑝(𝐃|𝜃) (2) 

where 𝑝(𝜃) represents the prior distribution – the assumed probability of the source term parameters 

before any data has been received, and 𝑝(𝐃|𝜃) is the likelihood distribution – a measure of how likely a 

particular dataset is, given a proposed source term. 

 

Due to the numerical intractability of the normalising constant (denominator) in equation 1, Bayesian 

approaches to STE seek a statistical solution, rather than an analytic one. Monte Carlo methods (Gelman 

et al. 2014) are therefore employed to generate samples from the posterior distribution of source terms.  

 

The Bayesian approach used in this paper is that of Robins, Rapley & Green (2009). In this approach, at 

every time instant, 𝑡, define a large collection of 𝑁 weighted random samples {𝜃𝑡
(𝑖)

, 𝑤𝑡
(𝑖)

} for 𝑖 = 1, … , 𝑁, 

such that 𝑤𝑡
(𝑖)

> 0 for all 𝑖 and all 𝑡, and ∑ 𝑤𝑡
(𝑖)

= 1𝑁
𝑖=1 . A hypothesis at time 𝑡 is denoted 𝜃𝑡

(𝑖)
  and 𝑤𝑡

(𝑖)
 is 

the associated weight, which reflects the importance of that hypothesis relative to the complete set of 

hypotheses. 

 

A Markov Chain Monte Carlo (MCMC) algorithm is then adopted to generate hypotheses so that as the 

number of hypotheses increases and the algorithm is run for sufficient time, the empirical distribution 

converges asymptotically to the target posterior distribution of the parameters, 𝜃. 

 

Adopting a weighted sample approach for the source term estimation problem enables the data to be 

processed on-line, as measurements are made, under the assumption that the likelihood of 𝜃, will factorise 

as: 

𝑝(𝐃|𝜃) = ∏ 𝑝(D𝑖|𝜃)

𝑖

 (3) 

The weighted sample approach therefore allows for continuous updating of the posterior probability 

density. This ensures that whenever the user requests output, e.g. a hazard prediction, the current source 

term posterior probability density distribution from which samples are drawn, is the most accurate one 

possible. 

 

Variational Iterative Refinement STE Algorithm 

The Variational Iterative Refinement Source Term Estimation Algorithm (VIRSA; Bieringer et al. 2015) 

is a relatively quick-to-compute STE algorithm that provides a prompt approximation for release location, 

time and mass, as well as surface wind speed. VIRSA consists of a combination of modelling and STE 

systems including: a back trajectory-based source inversion method; a forward Gaussian puff dispersion 

model – the Second Order Closure Integrated PUFF (SCIPUFF) model (Sykes et al. 2008); and a 

variational minimization approach, which uses both a simple forward dispersion model that is a surrogate 

for a more complex Gaussian puff model, and a formal adjoint of this surrogate model. 

 

In this approach, the backward trajectory method is used to provide a ‘first guess’ source estimate given 

the observations, while a variational data assimilation approach is used to refine the first guess via 

minimization of a cost function. 
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INTEGRATION OF VIRSA SOLUTIONS INTO BAYESIAN STE  

If available, pre-computed point estimates could be used within Bayesian STE to guide high-dimensional 

MCMC sampling towards areas of high likelihood and avoid expensive dispersion model runs from 

unlikely regions of parameter space. Previous attempts at coupling adjoint and Bayesian methods for this 

purpose (e.g. Brown, Robins & Green, 2010), have encountered two main challenges. Firstly, model 

discrepancies exist between the STE methodologies. This means that the adjoint solution is unlikely to 

coincide with the maximal likelihood/posteriori estimate of the Bayesian methodology. Secondly, only a 

subset of the source term parameters inferred by the Bayesian approach described here are estimated by 

adjoint-based methods. Methodologies that seek to fix or initialise the source term parameters to their 

adjoint estimates can fail if they ignore multivariate effects between non-estimated and estimated source 

term parameters (Silk et al. 2015). 

 

Approach 

The approach described here overcomes these challenges by viewing the VIRSA solution as an additional 

observation. An associated likelihood can then be defined that accounts for the expected disagreement 

between the STE procedures, and naturally allows the partial ‘observation’ of the source term to be fused 

into the Bayesian inference. Implemented naively, this approach would violate a fundamental rule of 

Bayesian statistics; that data should only be used once. The uncertainty in the source term posterior 

distribution would be artificially reduced by incorrectly considering the VIRSA solution and the sensor 

data observations as independent sources of information. The approach described here, therefore, also 

considers how the information contained within the VIRSA solution can be removed from the posterior 

distribution. The VIRSA solution effectively acts as a temporary ‘crutch’ to the Bayesian inference, 

guiding the sampling until adequate information has been assimilated via the actual sensor data. 

 

Conditioning on the VIRSA solution 

A VIRSA solution consists of point estimates for: release mass, m; release latitude, x; release longitude, 

y; and release time, t. Within the Bayesian STE approach, this solution is treated as a direct, partial 

observation of the source term, θ. The partial observation is denoted 𝑣 = (𝑥𝑣 , 𝑦𝑣 , 𝑚𝑣 , 𝑡𝑣), and can be 

processed similarly to other data points by defining an associated likelihood model, 

𝑝(𝑣|𝜃) = 𝜙(𝑥; 𝑥𝑣 , 𝜎𝑥
2)𝜙(𝑦; 𝑦𝑣 , 𝜎𝑦

2)𝜙𝑐(𝑚; 𝑚𝑣 , 𝜎𝑚
2 )𝜙(𝑡; 𝑡𝑣, 𝜎𝑡

2) (4) 

where 𝜙( ∙ ; 𝜇, 𝜎2) is a Gaussian density with mean 𝜇 and variance 𝜎2, and 𝜙𝑐(𝑚; 𝑚𝑣 , 𝜎𝑚
2 ) is a Gaussian 

density clipped at 𝑚 = 0, with 𝑚𝑣 and 𝜎𝑚
2  the mean and variance of the underlying Gaussian distribution. 

 

Assuming a multi-step Metropolis-Hastings algorithm, as described in Robins et al. 2009, a VIRSA event 

is then used to influence the acceptance or rejection of new hypotheses, 𝜃∗, through the likelihood ratio in 

the Metropolis-Hastings. The new hypothesis, 𝜃∗, is accepted if: 

𝑈(0,1) ≤ (
∏ 𝑃(𝐷𝑗|𝜃∗)𝑁

𝑗=1

∏ 𝑃(𝐷𝑗|𝜃𝑡
𝑖)𝑁

𝑗=1

) (
𝑝(𝑣|𝜃∗)

𝑝(𝑣|𝜃𝑡
𝑖)

)

1
𝑇𝑣

 (5) 

where 𝑇𝑣 is a tempering parameter that controls the influence of the VIRSA event. High values of 𝑇𝑣 

equate to low influence, with (
𝑝(𝑣|𝜃∗

)

𝑝(𝑣|𝜃𝑡
𝑖

)
)

1

𝑇𝑣

→ 1 as 𝑇𝑣 → ∞ for all 𝜃∗ and 𝜃𝑡
𝑖. 

 

Adaptive control of VIRSA influence 

The dependence of Bayesian STE sampling on the VIRSA solution is controlled by 𝑇𝑣. It is desirable that 

𝑇𝑣 is low at the start of an inference, when the Bayesian STE inference engine has processed few data 

points, and high near the end of an inference, when the majority of the sensor information has been 

incorporated into the posterior distribution. Given that sensor measurements may vary in how informative 

they are about the source term, control over 𝑇𝑣 is based upon an information measure on the posterior 

distribution, rather than the number of processed data points.  

 

The control algorithm is defined as follows: 

1. Initialise 𝑇𝑣=1; 
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2. After the MCMC sampler converges given the VIRSA solution, define 𝑉0 as the volume1 of the 

current marginal posterior distribution 𝑝(𝑥, 𝑦, 𝑚, 𝑡|𝐃, 𝑣) where 𝐃 represents the data points that 

have been processed so far; 

3. When convergence is achieved for each further data point, if the new volume of the marginal 

distribution 𝑉 < 𝑉0, set 𝑇𝑣 = 2𝑇𝑣 and update the hypothesis weights as described below. 

 

Updating importance weights 

In between stages of MCMC sampling, the current (VIRSA-assisted) posterior distribution 𝑝(𝜃|𝐃, 𝑣, 𝑇𝑣) 

is represented by a set of weighted hypotheses, (𝜃𝑖 , 𝑤𝑖). When 𝑇𝑣 is updated to 𝑇𝑣
′ (reducing the influence 

of VIRSA), the importance weights are updated as: 

𝑤𝑖
′ = 𝑤𝑖

𝑝(𝑣|𝜃)
1

𝑇𝑣
′

𝑝(𝑣|𝜃)
1
𝑇𝑣

 (6) 

and the hypothesis likelihood updated as: 

𝑝(𝐃, 𝑣, 𝑇𝑣
′|𝜃) = 𝑝(𝐃, 𝑣, 𝑇𝑣|𝜃)

𝑝(𝑣|𝜃)
1

𝑇𝑣
′

𝑝(𝑣|𝜃)
1
𝑇𝑣

 (7) 

 

Removal of VIRSA information 

Removal of the VIRSA event is achieved by deleting the VIRSA event from the list of data points in the 

validity window, and updating the importance weights as: 

𝑤𝑖
′ =

𝑤𝑖

𝑝(𝑣|𝜃)
1
𝑇𝑣

 (8) 

and updating the likelihoods as: 

𝑝(𝐃|𝜃) =
𝑝(𝐃, 𝑣, 𝑇𝑣|𝜃)

𝑝(𝑣|𝜃)
1
𝑇𝑣

 (9) 

This recovers an importance sample from the posterior distribution, 𝑝(𝜃|𝐃). However, as with processing 

or removing sensor data, the Bayesian STE should be allowed to re-converge before outputs are obtained. 

Complete removal of the VIRSA is triggered if one of the following occurs: 

1. The user requests removal; 

2. There are no further data points to process and an output has been requested. 

 

DISCUSSION 

This paper has presented a novel approach for utilising adjoint-based STE solutions within a more 

rigorous Bayesian STE inference engine. One of the original motivations for developing this approach 

was to facilitate more efficient data processing. In the Bayesian STE method described above, data is 

processed one at a time, with convergence of the posterior distribution achieved prior to processing the 

next data point. Attempting to process all the data in one go, however, could potentially lead to the 

inference getting trapped in local maxima. Coupling the Bayesian approach with an adjoint-based 

method, provides the potential to move more quickly to the appropriate parameter space, or provide the 

ability to overcome situations where the Bayesian inference has become stuck in regions of narrow 

density. 

 

A prototype implementation of this method has been produced and testing is ongoing. Early indications 

are that the success of combining the adjoint and Bayesian approaches for STE – measured in terms of 

runtime and accuracy – is inevitably highly dependent on the accuracy of the adjoint solution and the 

point at which it is injected into the Bayesian process. If the adjoint solution is far from the truth, then it 

will pull the Bayesian inference away from the truth. This will inhibit the Bayesian process, as it will 

need to wait for the adjoint ‘event’ to become exhausted (i.e. 𝑇𝑣 → ∞) or removed by the user, before it 

                                                           
1 Used to assess convergence. 
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can move to the correct regions of parameter space. This does, however, illustrate the importance of using 

the adjoint solution as only a temporary input into the Bayesian inference. 
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