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Abstract: Wind fields around industrial sites and in urban neighbourhoods have very complex structures, which are
sensitive to geometrical features such as topography and buildings. These wind field structures are difficult to simulate
with CFD models. Yet, these simulations are important to address various issues related to micrometeorology and
dispersion of pollutants. To perform small scale simulations, CFD models use inputs (initial and boundary conditions)
that usually are meteorological data obtained from measurements or larger-scale model outputs. These data often lack
precision, may not contain all necessary information, and are not adapted to the detailed features of local scale, espe-
cially the topography and the presence of buildings. A few measurements inside the domain, although very local, have
the potential to greatly enhance the precision of the simulations and thus the prediction of pollutants concentrations. If
some concentration measurements are available, they can also be used to improve the simulations. Using measurements
to improve the estimation of the system state is the goal of data assimilation. Data assimilation techniques developed so
far in meteorology are generally applied to larger scale simulations that are mainly driven by initial conditions and deal
with simple geometries without obstacles. The present work aims at developing local-scale data assimilation techniques
that focus on boundary conditions rather than initial conditions and may deal with very complex geometries. Two data
assimilation techniques (back and forth nudging algorithm and iterative ensemble Kalman smoother) are evaluated at
small scale, at first, with a simple flow, using 1D/2D solutions of the shallow water equations. This simple test-case
allows in particular to verify that small-scale simulations are more sensitive to errors on boundary conditions than errors
on initial conditions. The data assimilation techniques are adapted to take boundary conditions into account and their
performance and limitations are compared using the simple case described above.

Key words: Data assimilation, local scale simulation, boundary conditions, shallow water model, back and forth
nudging algorithm, iterative ensemble Kalman smoother.

INTRODUCTION
Context
Atmospheric dispersion modelling requires meteorological inputs, such as wind and turbulence fields, over
local domains with complex topographies (e.g., urban neighbourhoods or surroundings of industrial sites).
The local wind fields over these domains are difficult to simulate with CFD models because of their complex
structures which are sensitive to geometrical features (topography, building set up, etc.). To perform small
scale simulations, CFD models — for instance the atmospheric version of Code Saturne (Archambeau et al.,
2004) — use inputs (initial and boundary conditions) that are generally meteorological data obtained from
measurements or from larger-scale model outputs. These external large scale data are generally imprecise
and might not be adapted to the detailed features of local scale.

A few measurements inside the domain, although very local and potentially perturbed by, for instance,
the buildings, have the potential to greatly enhance the precision of the simulations. Using measurements
(e.g., wind velocity, concentration, etc.) to improve the estimation of the system state is the goal of data
assimilation.

Data assimilation techniques developed so far in meteorology (Kalnay, 2003; Asch et al., 2016) are
generally applied to larger scale simulations that are mainly driven by initial conditions (IC) and deal with
simple geometries without obstacles. The theoretical analysis of shallow water equations — approximation
of Navier-Stokes equations for shallow flows — shows how small scale simulations are dominantly influ-
enced by boundary conditions (BC). Consequently, the present work aims at developing local-scale data
assimilation techniques that focus on BC rather than IC and may deal with very complex geometries.



Introduction to data assimilation
The goal of data assimilation is to compute the best estimate of some control variables using all available
information (model, observations, and prior information).

One of the first and most basic data assimilation method is nudging, which consists in adding a relax-
ation term to the dynamical equations (Kalnay, 2003; Asch et al., 2016). The feedback term is proportional
to the distance between the observations and the projection of the system state into the observation space.
An improvement of this method and a potential substitute for 4D variational data assimilation has been
recently developed: the back and forth nudging (BFN) algorithm (Auroux and Blum, 2005, 2008; Auroux
et al., 2013). It has been tested and proved to converge on simple cases of shallow water model (Auroux,
2009), diffusion (Auroux et al., 2011), and transport (Auroux and Nodet, 2012).

Apart from nudging, data assimilation techniques developed so far and operationally implemented are
generally divided into two classes: statistical (or filtering methods) and variational methods.

Recently, hybrid methods such as the iterative ensemble Kalman filter and smoother (IEnKF and IEnKS)
(Sakov et al., 2012; Bocquet and Sakov, 2014) have been developed. These methods are based on the
iterative minimisation of a cost function using Gauss-Newton method. In the linear model case, the filtering
(i.e. at the end of the data assimilation time window) solution is equivalent to that obtained with the EnKF.

Both the BFN algorithm and the IEnKS have the great advantage to avoid using the model adjoint and
its tangent linear, and to handle non-linear analyses. Consequently, they have been adapted in the present
study so as to include boundary conditions in the control variables.

METHODS
Shallow water model
The shallow water equations (SWE) are derived from Navier-Stokes equations in the approximation of small
fluid height compared to horizontal spatial scales. These equations can be used to represent atmospheric
flows if the gravity g is replaced by the reduced gravity g′ = ρ−ρa

ρ g to account for the small difference
of density between the simulated boundary layer (ρ) and the free atmosphere above (ρa). Moreover, the
often used discretised ’level’ models — which use vertical finite-difference approximations — to simulate
continuously stratified fluid, are equivalent to multi-layer models — where SWE are applied to each layer.
Therefore the simple model described below can be considered as a crude vertical description of the atmo-
sphere into two layers. This equivalence between ’level’ models and layer models, together with the relative
simplicity of the SWE, motivate the use of a shallow water model to first test the data assimilation methods
for atmospheric local scale.

In one dimension, the two state variables involved in the SWE are the thickness of the fluid layer (h)
(here, the boundary layer), and the mean horizontal velocity (u) which are related as follows:
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with zf the bottom topography. The problem is

well-posed if two boundary conditions are prescribed, one on h and one on u. For subcritical flows, it is
necessary to impose a boundary condition on each side of the domain. In what follows, we thus prescribe
the velocity on the left of the domain: u(x = 0) = uL, and the fluid height on the right: h(x = L) = hR.
We consider the steady state obtained with these two boundary conditions.

Back and forth nudging algorithm
The back and forth nudging (BFN) algorithm is an iterative algorithm: loops of forward and backward
integrations, both with nudging, are performed over a time period T during which observations are available
(Fig. 1). The evolution of the system is governed by the two equations:
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where K and K̃ are gain matrices, the superscript f and b refer to forward and backward variables, and the
subscript k refers to the index of the BFN iteration.

With the changes of variables t̃ = T − t, X̃ =

(
h
ũ

)
, and M̃ =

(
ũ h
g ũ

)
, where ũ = −u, the

backward equation is exactly the same as the forward equation (1) where u is replaced with ũ = −u.
During each integration (either forward or backward), there might be a conflict between the prescribed

external boundary conditions and the internal state of the system, modified by the nudging. To avoid this
conflict, the length of the data assimilation time window, T , should be chosen equal to the time needed for
the nudging information to propagate into the whole domain.

Applying the method of characteristics to the backward equation, we have shown that the boundary
conditions must be reversed between forward and backward integration (Fig. 1). The boundary condition
that is prescribed upstream in the forward integration (here the velocity on the left of the domain, uL)
must be prescribed downstream in the backward integration (here ũR on the right). Similarly, the boundary
condition prescribed downstream in the forward integration (here the height on the right, hR) must be
prescribed upstream in the backward integration (here hL on the left). The values of the boundary conditions
ũR and hL for the backward integration are given by the system state on the right and left of the domain,
respectively, at the end of the forward integration: ũkR = −uk(x = L, t = T ) and hkL = hk(x = 0, t = T ).
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Figure 1: Diagram of the kth cycle of the BFN algorithm. The transformations (TF→B) and (TB→F ) shift from forward
system to backward system and vice versa. They include a change of variable t̃ = T − t and an inversion of boundary
conditions. In the case of shallow water equations, the backward integration is equivalent to perform an integration
with positive time steps but with ũ = −u.

Iterative ensemble Kalman smoother
The iterative ensemble Kalman smoother (IEnKS) (Bocquet and Sakov, 2014) considers assimilation time
windows of size L∆t with L ≥ 1. The iterative ensemble Kalman filter (Sakov et al., 2012) is the particular
case where L = 1. If L > 1, the analysis is performed at a time tL and focuses on the system state at the
beginning of the assimilation time window, i.e. at t0: x0 (Fig. 2).
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Figure 2: Two cycles of IEnKS analysis. An analysis is performed every S time steps, with 1 ≤ S ≤ L + 1. The
number of new observation vectors included in the analysis (and thus the cost function) at each analysis cycle is referred
to as No. Here the data assimilation time window includes L = 4 time steps and we consider the simple case where
S = No = 1 for which only the last observation of each assimilation window is newly assimilated. It is a single data
assimilation scheme: each observation is assimilated only once.



The evolution between t0 and tL depends on the initial state x0 and all the boundary conditions between
these two times, stored in the vector z0,L:1. It is governed by the modelML:0:

xL =ML:0 (x0,b1,b2, . . . ,bL) =ML:0 (z0,L:1) (3)
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The model is assumed perfect and all past observations up to tL are given by the vector yL:. The obser-
vation errors — defined as yL−HL(xL), whereHL is the observation operator — are assumed to be Gaus-
sian with zero mean and covariance matrix RL. We consider an ensemble of Nx initial state vectors and
an ensemble of N b boundary condition vectors: Ex0 = {x0,[i]}i=1...Nx and EbL+1:1 = {bL+1:1,[i]}i=1...Nb ,
centred on the background estimate z(0)0,L+1:1. The smoothing pdf of z0,L:1, p(z0,L:1|yL−1:), is assumed to

follow a Gaussian distribution of mean z(0)0,L:1 and covariance matrix P̃0,L:1, given by the previous cycle of
the IEnKS.

We seek a combination of the ensemble members, defined by the weight w0,L+1:1, that gives the best
estimate of z0,L+1:1. Using a Bayesian approach, we have derived a cost function J in the ensemble space:

J̃ (w0,L+1:1) =
1

2
‖w0,L+1:1‖2+

1

2
‖yL −HL ◦ML:0(z(0)0,L+1:1 + A0,L+1:1w0,L+1:1)‖2R−1

L

(5)

where A0,L+1:1 is the anomaly matrix. The minimum of this cost function is reached for the most likely
w0,L+1:1, referred to as w?0,L+1:1. Due to pre-conditioning by A, the calculation of the gradient of the cost
function does not require the adjoint nor the tangent linear ofHL ◦ML:0. Consequently the cost function is
pretty easily minimised, following, for instance, a Gauss-Newton algorithm. The best estimate of z0,L+1:1

is thus given by z?0,L+1:1 = z(0)0,L+1:1 + A0,L+1:1w?0,L+1:1.

RESULTS
The BFN algorithm and the IEnKS have been tested on a shallow water two-layer system for two one-
dimensional twin experiments (”observations” are extracted from the reference simulation). Both experi-
ments correspond to a channel with a realistic topography profile but without dissipation. The true state
is obtained with an upstream boundary condition equal to uL = ut = 5.5m/s and the prior estimate (or
background) corresponds to the boundary value uL = ub = 4.4m/s. The value of the downstream bound-
ary condition is unchanged between the reference simulation and the prior estimate (hR = 617m). Five
observations, equally distributed, are extracted from the reference simulation at every time step. In the first
experiment, the observations are kept exact, whereas in the second experiment they are perturbed with a
white noise.

Figure 3a (respectively Fig. 3c) shows the state of the system after 1, 5, and 10 BFN iterations in the
experiment with perfect (respectively noisy) observations. The nudging matrix is the same in forward and
backward integration: K = kHT where k∆t = 0.1. Less than 10 BFN iterations are required to reach the
convergence, i.e. the model has to be integrated less than 20 times. Figures 3b and 3d show the IEnKS
analysis state, obtained with P̃ = I, R = 0.1I, and an ensemble of 3 members. The minimisation of the
cost function only needs 2 or 3 iterations of the Gauss-Newton algorithm, i.e. this method requires less than
10 model integrations. Both the BFN algorithm and the IEnKS help correcting the boundary conditions,
though the IEnKS is slightly more efficient in this case as it requires less integrations of the model.

CONCLUSION
Variants of the BFN algorithm and the IEnKS have been derived to take boundary conditions into account
in addition to the initial conditions. The first results show the efficiency of these methods to assimilate a
few observations, perfect or noisy, on cases with a complex one-dimensional geometry. Further investiga-
tion on cases with two horizontal dimensions and vertical profiles of velocity will be performed, as well as
sensibility analysis to the different parameters involved in each method. Eventually, we will apply these
methods to more realistic cases with Code Saturne.
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(a) Results of the BFN algorithm with perfect observations
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(b) Results of the IEnKS with perfect observations
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(c) Results of the BFN algorithm with noisy observations
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(d) Results of the IEnKS with noisy observations

Figure 3: Profiles of the velocity obtained after some BFN iterations (a and c) and at the end of the IEnKS analysis (b
and d) for experiments with perfect (a and c) and noisy observations (b and d). The simulations are performed with a
shallow water model without dissipation.
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