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Abstract: We study the reliability of the Lagrangian stochastic micromixing method in predicting higher-order 

statistics of the passive scalar concentration induced by an elevated source (of varying diameter) placed in a turbulent 

boundary layer. To that purpose, we analyse two different modelling approaches by testing their results against the 

wind-tunnel measurements discussed in Nironi et al (2015). The first is a probability density function micromixing 

model, which simulates the effects of the molecular diffusivity on the concentration fluctuations by taking into 

account the background particles. The second is a new model, named VPΓ, conceived in order to minimize the 

computational costs. This is based on the Volumetric Particle Approach providing estimates of the first two 

concentration moments with no need for the simulation of the background particles. In this second approach, higher 

order moments are computed based on the estimates of these two moments and under the assumption that the 

concentration probability density function is a Gamma distribution. 
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INTRODUCTION 

Concentration fluctuations generated by the dispersion of a contaminant from a localized source in a 

turbulent flow characterize many processes. The full statistical characterization of this random field 

requires a multi-point, multi-time probability density function (PDF) of the concentration. This is as 

complicated as fully solving the turbulent flow and it is therefore unfeasible. More practically, we may 

search for the full statistical characterization of the fluctuations in any point of the field. Recent studies 

have proposed to extend the use of single-particle Lagrangian models (Thomson, 1987) in heuristic ways, 

to account for the evolution of the second moment of the concentration fluctuations (Cassiani, 2013). This 

is the case of the Volumetric Particle Approach (VPA) that can be viewed as a simplification of a 

“traditional” Lagrangian PDF micromixing method. This model is computationally efficient, since it 

decouples the evolution of the dispersing plume from the background and it requires simulating the 

trajectories of the marked particles originated at the source, only. The assumptions on the functional form 

of the PDF rely on experimental investigation presented in Nironi et al (2015) and supporting the 

existence of a universal function for the concentration PDF. Namely, the measurements show that the 

PDFs due to a point source in a turbulent boundary layer are modelled with good accuracy by a family of 

one-parameter Gamma distributions depending on a single parameter k, which is a function of the 

fluctuation intensity ic= σc/cm (cm and σc are the mean and the standard deviation of the concentration): 
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where k=ic
2 , Γ(k) is the Gamma function, and χ≡c/cm (c is the sample space variable). 

 

MODEL EQUATIONS 

The temporal evolution of the velocity and position of an ensemble of independent fluid particles is 

governed by the following stochastic differential equations: 
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where ai and bi are the deterministic drift and the stochastic diffusive terms, respectively, Ui’ is the 

Lagrangian velocity fluctuation, <ui > is the Eulerian mean velocity, dξj is an incremental Wiener process 

with zero mean and variance dt, and Xi is the particle position. The deterministic acceleration term ai is 

obtained by imposing the well-mixed condition (Thomson, 1987). The stochastic diffusive term bij is 

defined as bij=δij √ (C0ε), where δij is the Kronecker delta, ε the mean turbulent kinetic energy dissipation 

rate, and C0 is the Kolmogorov constant. 

 

PDF Micromixing model 

The PDF micromixing model (PMM) aims to solve a transport equation for the concentration PDF 

explicitly accounting for the dissipative effects of the molecular diffusivity (Pope, 1998). This approach 

simulates explicitly the micromixing process as given by a mass exchange between polluted fluid 

particles and ‘clean’ particles of ambient air. The simulation of the higher-order moments of the 

concentration field requires then the introduction of a Markovian state variable C representing the particle 

concentration and parametrized with the IECM model (Pope, 1998): 
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where <C|X,U> is the mean scalar concentration conditioned on the local position and velocity and τm 

represents the time scale of the local mixing, which is defined as a function of local velocity variance, 

mean turbulent kinetic energy dissipation rate, source size, and particle flight time (Cassiani et al, 2005). 

 

The VPΓ model  

This modelling approach is based on the use of the VPA model (Cassiani, 2013) and the assumption that 

the concentration PDF is given by a Gamma distribution. This approach simplifies the representation of 

the mixing phenomenon and it requires to simulate explicitly only the plume particles without taking into 

account the background particles. As a consequence of that, a considerable saving in the computational 

resources is achieved. To that purpose, the micromixing process is simulated as a change in a fictitious 

volume Vp associated with the plume particles. Since for a non-reactive the scalar mass of tracer mp 

carried by a particle is conserved (dmp/dt=0), we can compute the temporal evolution of the volume 

Vp(t+dt)=Vp(t)C(t)/C(t+dt). The concentration C is modelled through Eq. 4, by implementing the 

Interaction by Exchange with the Mean (IEM) model (i.e. with Eq. 4 but adopting a unique velocity class, 

e.g. Pope, 2000). The computation of the moments of the concentration <cn> requires the spatial 

discretization of the computational domain: 
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where Nc is the particle number held in the generic cell of volume Vc. It is worth noting that the use of 

IEM model does not alter the mean concentration field in the VPA framework (Cassiani, 2013). The term 

Vp,i/Nc can be seen as the probability that the particle i takes the concentration Ci. The approximations 

introduced in the VPA model provide reliable estimates of the mean and variance only. The higher-order 

statistics (n>2) are modelled by a family of one-parameter Gamma distributions (Eq. 1).  

 

NUMERICAL CODE 

The micromixing models - PMM and VPA - are implemented in a numerical code using a dynamical 

expanding grid to minimize the computational resources while maintaining a good accuracy of the 

numerical solutions (Cassiani et al, 2005). The following boundary conditions are imposed: 

 at the top and lateral boundaries, the particle velocity and position are elastically reflected and 

the concentration is absorbed; 

 at the ground, the particles are elastically reflected and they conserve their concentration; 

 in the PMM model the source is represented by marking the particles with a normally distributed 

scalar concentration whereas in the VPA model we used a cylindrical top-hat distribution. 

The PMM and VPA models require the setting of some free parameters, whose values are generally 

obtained by fitting the numerical estimates of the first and second-order concentration moments to the 



relative values provided by the experiments. These parameters are C0, the initial source distribution σ0, the 

Richardson-Obukhov constant Cr and the micromixing constant µt. The values adopted in the simulations 

are summarized in Table 1. The number of velocity classes used in the PMM model is 529 (23 for each of 

the two spatial directions). 

 

Table 1. Model parameter values adopted in the simulations 

C0 σ0 Cr μt,PMM μt,VPA 

4.5 √(2/3)ds 0.3 0.9 0.54 

 

RESULTS 

We simulated the dispersion of a passive scalar fluctuating plume in the neutral boundary layer and we 

compared the numerical results provided by the two micromixing models with the wind-tunnel 

measurements by Nironi et al (2015). We simulated the continuous releases emitted from an elevated 

source (zs/δ=0.19) of varying diameter ds: 1) ES 3 (ds=0.00375δ), and 2) ES 6 (ds=0.0075δ), where δ is 

the boundary layer thickness (equal to 0.8 m). The statistics of the velocity field required as input data for 

the Lagrangian stochastic models are: the mean longitudinal velocity (Fig. 1a), the standard deviation of 

the velocity components (Fig. 1b), and the turbulent kinetic energy dissipation rate (Fig. 1c). 

 

Figure 1. Vertical profiles of the velocity field imposed in the numerical simulations: a) mean longitudinal velocity, 

b) velocity fluctuations, c) turbulent kinetic energy dissipation rate. The velocity statistics are normalized using the 

free-stream velocity u∞ and the friction velocity u∗. The ratio between the two is u∗/u∞=0.037 

 

Profile of concentration statistics  

Firstly, the reliability of the model is evaluated by focusing on longitudinal profiles of the standard 

deviation, skewness, and the kurtosis at the source height zs and at y=0. All the results presented in the 

paper were computed using 8×108 and 2×107 particles fort the PMM and the VPA model, respectively. 

This amount of particles was sufficient to get a satisfactory accuracy.  

 

PMM model 

The experimental data show that the source diameter has a significant influence on higher-order moments 

up to a distance of approximately x/δ=3.75 from the source (Figs. 2a-c), whereas its influence on the 

mean concentration is negligible (Fackrell and Robins, 1982; Nironi et al, 2015). The comparison 

between the measurements and the numerical results along the plume centreline in the x-direction shows 

two main features. First, the agreement between experimental and numerical profiles of ic is very 

satisfactory in all the domain (Fig. 2a). Second, in the far field the model significantly overestimates the 

experimental values and predicts a spurious influence of the source size on Sk and Ku (Figs. 2b and c).  

 

Figure 2. Results of the PMM model: longitudinal evolution of the concentration statistics: a) fluctuation intensity ic, 

b) skewness Sk, c) kurtosis Ku 



VPΓ model 

This approach is based on the VPA model to compute the spatial distribution of the first two moments of 

the concentration field and on the assumption that the concentration PDF is a Gamma distribution, i.e. that 

the Sk=2ic and the Ku=6(ic)2+3. 

The model is able to simulate ic in all the domain with good accuracy (Fig. 3a), and provides reliable 

estimates of the skewness and kurtosis (Figs. 3b and c). In doing this, the VPΓ model is able to reproduce 

correctly the effects of the source size, including its vanishing influence in the far field. Despite this 

general good agreement, it is still possible to detect some discrepancies between the two. For ES 3, the 

numerical solutions of ic slightly underestimate the experiments in the near field, at x/δ=0.625, and in the 

intermediate field, at x/δ=1.25. The computed Sk and Ku of the ES 3 source overestimate the experimental 

values in the near filed and underestimate them in the far field. However, the relative error is limited 

(about 15% on the centreline). Some differences are also present in the near filed for the ES 6 source. 

 
Figure 3. Results of the VPA model: longitudinal evolution of the concentration statistics: a) fluctuation intensity ic, 

b) skewness Sk, c) kurtosis Ku 

 

One-point concentration PDF 

For the PMM model, the computation of the PDFs are obtained by collecting the concentration values 

carried by a large number of particles in a small control volume and organizing them according to their 

frequency. For the VPΓ model, the shape of the PDF is imposed to be that of a Gamma distribution, 

completely determined by cm and σc (see Eq. 1). The PDFs are evaluated at y=0, z=zs and at varying 

distances from the release point. The PDFs are normalized with the local mean concentration. Note that 

the fluctuating plume considered here is characterized by a large intermittency in the near field, where the 

dispersion process is dominated by the meandering (Nironi et al, 2015). In particular, instantaneous 

concentration measurements show a majority of values very close to zero and few values marked by very 

high concentration. This implies that the concentration PDF assumes an exponential-like shape that both 

the models are able to reproduce (not shown here). Increasing the distance from the source, the influence 

of the meandering process becomes negligible, the intermittency at the plume centreline reduces and the 

form of the PDF shifts to a log-normal-like distribution (Nironi et al, 2015). In order to quantify the 

accuracy of the model, we also compute the relative errors RESk=|Skmod – Skexp|/|Skexp| and REKu=|Kumod – 

Kuexp|/Kuexp, where Skexp and Kuexp are the experimental values of skewness and kurtosis, respectively, and 

Skmod and Kumod are those estimated numerically. At x/δ=0.625 for low values of χ we observe some 

differences between the experimental PDF and that evaluated with the PMM model (Fig. 4a). Note 

however that this disagreement does not preclude the model to correctly estimate the variance of the PDF 

(Fig. 2a). The relative errors for Sk and Ku are lower than 21% (RESk,PMM=0.206 and REKu,PMM=0.143, 

respectively). A similar behaviour is observed for the results of the VPΓ model, where RESk,VPΓ=0.208 and 

REKu,VPΓ=0.457, even the relative error of the kurtosis is slight larger than that of the PMM model. The 

low relative errors ReKu reveal that in the near field both models reproduces accurately the complete 

experimental PDF. In the far field the PMM and VPΓ behave differently (Fig. 4b). The form of the PDF 

computed with the PMM model suggests that, with respect to the experimental data, the large values of χ 

are overestimated and the low values are underestimated. The differences existing between the VPΓ 

solutions and the measurements are small and the reliability of the model is satisfactory. For the larger 

source the VPΓ relative errors are lower than 30% (RESk,VPΓ=0.062 and REKu,VPΓ=0.282), whereas the 

PMM model exceed 300% for the skewness and 900% for the kurtosis (RESk,PMM=3.262 and 

REKu,PMM=9.343). The experiments show that the two sources - ES 3 and ES 6 - induce the same 

concentration field at distances larger than x/δ=3.75 from the release location. The VPΓ model reproduces 



this feature with good approximation (Fig. 3), whereas the solutions computed by the PMM model exhibit 

noticeable differences until x/δ=5.0 (Fig. 2).  

  
Figure 4. Concentration PDF of ES 6 source at y=0, z=zs: a) x/δ=0.625, b) x/δ=5.0 

 

DISCUSSION AND CONCLUSIONS 

We have tested two micromixing model formulations, the PMM and the VPΓ model and we have 

investigated their ability in estimating the concentration statistics of a passive scalar emitted within a 

turbulent boundary layer. We simulated the dispersion of a fluctuating plume produced by a continuous 

release from two point sources of different diameter and we compared the results with the experimental 

data-set reported in Nironi et al (2015). The numerical solutions show that the PMM model is able to 

correctly simulate the concentration statistics in the near field, reproducing effects of the source size on 

the high-order moments. In the far field the PMM model clearly tends to overestimate the measurements, 

and the numerical profiles of Sk and Ku are still sensitive to the source size. This is markedly different 

from what is observed in the experiments (where the source size effects vanishes for x≥3.75δ). This 

behaviour can be reasonably attributed to the inability of the IECM model to correctly relax the 

concentration PDF form towards that of a Gaussian distribution in the absence of a relevant mean scalar 

gradient (see e.g. Pope, 2000,). Thus overestimating the occurrence of concentration values that are larger 

than the mean where the mean concentration gradients are weak. These limitations may be overcome by 

computing the high-order statistics using the mean and variance, both reliably modelled by the PMM, and 

assuming that the PDF is a Gamma distribution. We underline that the Gamma distribution hypothesis 

could be applied to any model being able to provide accurate estimates of the first two moments of the 

concentration, including e.g. the PMM model. Here we chose to calculate the first two concentration 

moments with the VPA model that is able to provide accurate solutions of mean and variance, requiring a 

number of particles that is significantly smaller than that needed by the PMM model, with a significant 

saving of memory and CPU time. The latter approach, referred to here as the VPΓ model, is then suitable 

for the simulation of dispersion phenomena for operational purposes. 
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