
DATA ASSIMILATION AT LOCAL SCALE TO
IMPROVE CFD SIMULATIONS OF DISPERSION
AROUND INDUSTRIAL SITES AND URBAN

NEIGHBOURHOODS

C. Defforge1, B. Carissimo1, M. Bocquet1, R. Bresson1, and P. Armand2
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MICRO-METOROLOGICAL APPLICATIONS

I Wind resource assessment

↔

Wake effect

I Dispersion modelling in built environment

C. Defforge (CEREA) Data assimilation for dispersion 3 / 23



MICRO-METOROLOGICAL APPLICATIONS

I Wind resource assessment

↔

Wake effect

I Dispersion modelling in built environment

C. Defforge (CEREA) Data assimilation for dispersion 3 / 23



EXAMPLES OF IN SITU MEASUREMENTS

Candidate site for wind farm

Met masts on crests

Urban area (Toulouse)

Meteo and pollutant observations
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CONTEXT
Meso-scale

(ex : WRF, AROME)
∆x ≈ 10km, ∆z ≈ 10m

L ≈ 3000km, L
U ≈ 7 days Boundary

conditions

Local scale
(ex : Code Saturne)

∆x ≈ 10m, ∆z ≈ 1m

L ≈ 5km, L
U ≈ 17min
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ITERATIVE ENSEMBLE KALMAN SMOOTHER - IEnKS1

I Ensemble variational method appropriate for CFD simulations:
I independent of atmospheric model
I handle non-linear operators
I easily parallelisable

I Variational method ↔ minimise cost function
J̃ = ‖distance to background‖2

B−1 + ‖distance to observations‖2
R−1

I Ensemble-based method ↔ error statistics represented by an ensemble
I Goal: Find best combination of ensemble members (w?)
I Iteratively minimise cost function, in the ensemble space

1Sakov et al. (2012); Bocquet and Sakov (2014)
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IEnKS ALGORITHM

Ensemble = background + anomalies
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ESTIMATION OF BACKGROUND ENSEMBLE
Ensemble

↔ Background err. covar. mat.

E = zb + A

B = AAT Bi ,j = ci ,jσiσj

A = anomalies

A ∼ leading modes of B = correlation × std
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Estimate (ci ,j) and (σi ) from statistical analysis of climatology:

I Mesoscale simulations: Wind resource assessment (WRF)

I Observations: Dispersion modelling (above the canopy for all the trials)
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WIND RESOURCE ASSESSMENT 1

I Site with very complex topography (4km× 4km× 2030m)

I Field campaign (August-December 2007): 3 met masts

I Hourly meso-scale simulations (WRF) over same region. Results
clustered in 50 classes (WRAPP methodology)
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DATA ASSIMILATION EXPERIMENT

I 50 representative situations

I Control vector = BC for 20 vert. profiles × 21 levels × (u,v) = 840 var.

I 10 observations (u, v , WS) from masts M and P. σo = 0.1m2/s2.

I 5 members

I Cross validation with 8 observations (u and v) from mast M80
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RESULTS OF TWIN EXPERIMENTS
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WIND POTENTIAL AND UNCERTAINTY
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DISPERSION IN BUILT ENVIRONMENT (MUST)
I Mock Urban Setting Test (MUST) - September 2011 - Utah Desert
I Idealized city constituted with containers (200m× 200m)
I Field campaign: wind and concentration observations
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DATA ASSIMILATION EXPERIMENT

I Case 2681829: neutral stability
conditions

I Control vector = 1 vert. profile
(22 levels) × (u, v , k) = 66 var.

I 14 observations (u, v) from 3
locations

I 5 members

I Cross validation with
observations in the canopy:

I 12 for u,
I 12 for v ,
I 10 for k ,
I 40 for concentration
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y
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MAE AND RMSE FOR U, V, K, AND CONCENTRATION
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COMPARISON WITH REFERENCE1: Wind speed at 1m
Background Analysis

Reference

1Milliez and Carissimo (2007)
C. Defforge (CEREA) Data assimilation for dispersion 19 / 23



COMPARISON WITH REFERENCE: Concentration at 1m
Background (departure from ref) Analysis (departure from ref)

Reference
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CONCLUSIONS & PERSPECTIVES

I The IEnKS can be applied to local scale atmospheric simulations

I Application to 2 micro-meteorological applications: wind resource
assessment + dispersion modelling

I The IEnKS has double action: improve exactitude (mean) + improve
accuracy (variance) of BC and thus simulated values (wind, turbulence,
concentration) within the domain.

I Control variables (BC) highly correlated ⇒ method efficient with small
ensemble (N = 5)

I The IEnKS is easily adaptable to different models or study cases

I Perspectives :
I MUST: assimilate observations of concentration
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