### A STUDY OF ODOUR METRICS AND MODELS USING A COMPREHENSIVE MEASUREMENT CAMPAIGN DATASET

#### CERC: Catheryn Price, Jenny Stocker, Kate Johnson, Rohan Patel, Martin Seaton, David Carruthers

ELLE: Jūlija Doktorova, Jānis Rubinis

#### HARMO19, Bruges, June 2019



Cambridge Environmental Research Consultants Environmental Software and Services

## Factors that affect the impact of odours: FIDOL

| Frequency     | Short timescales<br>Olfactory fatigue                      |
|---------------|------------------------------------------------------------|
| Intensity     | Concentrations<br>Perception/strength of the odour         |
| Duration      | Total exposure time<br>longer temporal patterns            |
| Offensiveness | Human response<br>Hedonic tone                             |
| Location      | Sensitivity of receptors<br>Land use (e.g. Urban vs rural) |

- Effective odour criteria should take these factors into account
- A particular challenge in dispersion modelling is the Frequency factor

## **FIDOL:** Frequency

- How often an individual is exposed to odour
- Duration of a single breath = a few seconds
- Olfactory fatigue / adaptation:
  - An individual can become acclimatised to the odour unable to detect the odour after a certain period
  - But if odour has an on/off/on pattern, this is disrupted
- Assessment implications, e.g.
  - Sub-hourly averaging times
  - Fluctuating plumes
  - Intermittency
  - Peak-to-mean concentrations



# 'Percentile of hourly averages' approach

- Used in most countries with odour criteria
- Does not directly consider the concentration frequency
- Simple concept and straightforward methodology
- Tried and tested:
  - Many studies have found good correlation between high percentile concentration results and annoyance
  - Used in many different practical situations and subjected to much legal scrutiny
- Various percentile values and/or thresholds used
  - Often the 98<sup>th</sup> percentile, but other values, and multi-percentile approach also used

## 'Odour hours' approach

- Germany and Austria (and some other countries/regions) use 'odour hours' approach
- Hours that have recognisable odour (above a 1ou<sub>E</sub>/m<sup>3</sup> threshold) for at least 10% of the hour (i.e. 6 minutes)
  - Equivalent to a 90<sup>th</sup> percentile of 'instantaneous' concentrations
- Odour assessment: the percentage of occurrences of 'odour hours' within a year (odour frequency)
- More easily determined by field assessment than the 'percentile of hourly averages' approach
- Regulatory modelling in Germany uses a peak-to-mean approach to convert hourly-averaged concentrations to sub-hourly values

## Peak-to-mean ratios: key questions

- What is the 'peak' in 'peak-to-mean'?
  - Not standardised; definitions include
    - Various percentiles (90<sup>th</sup>, 98<sup>th</sup>, 99<sup>th</sup>)
    - Maximum (100<sup>th</sup> percentile)
    - A standard deviation relationship
  - 90<sup>th</sup> percentile equates to odour hour criteria (6 minutes exceed)
- Is a fixed peak-to-mean ratio acceptable?
- If so, under which conditions?
- If a fixed value is not acceptable, how should the peak-tomean ratio be determined?

## Modelling fluctuating concentrations

- Fluctuating concentrations are not commonly modelled
- Constraints and challenges:
  - Predicting 'instantaneous' concentrations is inherently difficult, especially at the right place and at the right time
  - Historically few sub-hourly concentration validation datasets
  - Many processes and source types have few datasets
  - Usually only hourly-averaged met data available
- Key questions:
  - Is it feasible and/or appropriate to model very short timescales of concentrations to assess odour nuisance?
  - Is it more feasible/appropriate in some circumstances?
  - How could it be improved?

## ADMLC project

- 'Review of approaches to dispersion modelling of odour emissions and intercomparison of models and odour nuisance assessment criteria'
- Ongoing project for the UK Atmospheric Dispersion Modelling Liaison Committee (ADMLC)
- CERC working alongside SIA Estonian, Latvian & Lithuanian Environment (ELLE), with input from RSK-ADAS
- The work described in this presentation was carried out in parallel with this project

| Model                                     | Туре                   | Calculation of odour<br>hours                    |
|-------------------------------------------|------------------------|--------------------------------------------------|
| ADMS<br>(CERC)                            | Gaussian<br>plume      | Fluctuations module and fixed peak-to-mean ratio |
| AERMOD<br>(US EPA)                        |                        |                                                  |
| AUSTAL2000<br>(Janicke<br>Consulting/UBA) | Lagrangian<br>particle | Fixed peak-to-mean ratio                         |

## ADMS fluctuations module

- Calculation of sub-hourly concentrations
- Also useful for applications such as toxic or flammable gases
- Based on a probability distribution of concentrations
- Accounts for variations in both meteorology and turbulence
- Inputs: averaging time (minimum = 1 second) and percentile value(s)
- CERC has recently adapted the module to generate output specifically for odour hours (yes/no for each hour)

## ADMS fluctuations module: example





----- Measured

- Transect (arc) concentrations
- Percentiles: 1-second averaging time



## Peak-to-mean ratios

- AUSTAL: A fixed peak-to-mean ratio of 4 is applied in the model as a proxy for the 90<sup>th</sup> percentile of instantaneous concentrations
  - In practice, the hourly average value is simply compared with a threshold of 0.25 ou<sub>E</sub>/m<sup>3</sup>
- ADMS: A fixed peak-to-mean ratio of 4 was simply applied to the hourly average concentrations as a post-processing step



### Datasets used in the ADMLC project (red = this presentation)

### • OROD

- Field experiments at a pig farm with SF<sub>6</sub> tracer and odour measurements
- I0-minute and some shorter (10-second) measurements
- CEDVAL
  - High frequency wind tunnel measurements, based on the OROD dataset
- Port
  - Continuous electronic nose measurements at three locations, 1-minute averages
- Pig farm in Austria
  - Field experiment with odour measurements

## OROD (BWPLUS) dataset

- 14 field experiments at a pig farm
- Some have two receptor arcs, others a single arc
- All points: 10-minute odour and SF<sub>6</sub>
- At two points for each experiment , 10-second odour and SF<sub>6</sub> also measured
- The subjects recorded their odour perceptions as a value from 0 (no odour) to 6 (extremely strong odour), with 1 = a very faint odour
- Followed VDI Guideline 3940



## OROD dataset: 10-minute average SF<sub>6</sub>



- Quantilequantile plot over all experiments
- Shows ADMS data (without fluctuations module)
- Have also run with AUSTAL

### OROD dataset: 10-second average SF<sub>6</sub> (ADMS fluctuations)



#### Measured Peak to Mean ratio



## Port dataset

- Terminal in Riga, Latvia
- Main activities: unloading, short-term storage and loading of oil
- Continuous electronic nose monitoring at 1-minute intervals
- Several years of data

CERC

 Monitors allow operator to monitor odour trends in real time



#### • 98<sup>th</sup> percentile of hourly averages

| Monitor  | Measured | ADMS | AUSTAL |
|----------|----------|------|--------|
| BLB East | 7.1      | 12.0 | 10.2   |
| OZO      | 9.7      | 4.3  | 4.3    |
| VEGA     | 20.2     | 5.4  | 17.0   |

#### • Odour hours prediction (threshold = $5 \text{ ou}_{\text{E}}/\text{m}^3$ ) (%)

| Monitor  | 'Correct'<br>odour hour<br>(ADMS) | 'Correct' non-<br>odour hour<br>(ADMS) | 'Correct' odour<br>hour (AUSTAL) | 'Correct' non-<br>odour hour<br>(AUSTAL) |
|----------|-----------------------------------|----------------------------------------|----------------------------------|------------------------------------------|
| BLB East | 59                                | 75                                     | 66                               | 71                                       |
| OZO      | 10                                | 93                                     | 12                               | 85                                       |
| VEGA     | 22                                | 90                                     | 43                               | 78                                       |

## Port dataset: prediction of odour hours



## Conclusions

- Evaluation of ADMS and AUSTAL2000 for odour assessment using two datasets:
  - Field campaign at a pig farm
  - Continuous monitoring at a port
- Fixed peak-to-mean and fluctuations modelling assessed
- ADMS and AUSTAL2000 perform similarly in predicting odour hours (fixed peak-to-mean)
- The ADMS fluctuations module can be used to model subhourly concentrations to assess the odour hour criteria
- Further work ongoing to assess the relative merits of fixed peak-to-mean and fluctuations modelling approaches

## Many thanks for your attention

