Application and intercomparison of three data assimilation methods for air quality evaluation on the Île-de-France area

^aChi Vuong NGUYEN, ^aLionel SOULHAC, ^bCyril Joly and ^bOlivier SANCHEZ

3rd June 2019

19th HARMO conference, Bruges

UNIVERSITÉ De lyon

TRALELYON

CNIS

 ^a Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon I, CNRS, Laboratoire de Mécanique des Fluides et d'Acoustique, UMR 5509, 36 Avenue Guy de Collongue, F-69134, ECULLY, France
^b Airparif

INSTITUT NATIONAL DES SCIENCES APPLIQUÉES LYON

INTRODUCTION

Introduction

Evaluation of urban air quality: measurements

- Accurate data
- X Heterogeneous spatial distribution

Introduction Evaluation of urban air quality: modelling

Fine spatial resolution
Forecast
Scenario studies
High number of species
High uncertainties

Introduction Evaluation of urban air quality: data assimilation

Data assimilation (DA): combination of measurements and modelled data to determine the best estimate of the system state

- x^b: background (n)
- y: observations (m)
- x^a: analysis (n)

TRALELYON

• H: observation operator (m x n)

DATA ASSIMILATION

Data assimilation Bias Adjustment Technique (BAT)

Correction coefficient: $\alpha = \frac{\sum_{i}^{m} y_{i}}{\sum_{i}^{m} x_{i}^{b}}$

• x_i^b : background at point p_i

y_i: measurement at point p_i

m: number of observations

Analysis: $\mathbf{x}^{\mathbf{a}} = \alpha \mathbf{x}^{\mathbf{b}}$

with:

۲

7

Data assimilation Best Linear Unbiased Estimator (BLUE)

- Analysis: $\mathbf{x}^{\mathbf{a}} = \mathbf{x}^{\mathbf{b}} + \mathbf{K}(\mathbf{y} \mathbf{H}\mathbf{x}^{\mathbf{b}})$
- Kalman gain: $\mathbf{K} = \mathbf{B}\mathbf{H}^T (\mathbf{H}\mathbf{B}\mathbf{H}^T + \mathbf{R})^{-1}$ with:
 - K: Kalman gain
 - **R**: observation error covariance matrix
 - **B**: background error covariance matrix
- Modelling of matrix **R**:
 - $\mathbf{R} = \operatorname{diag}(\sigma_1^2, \sigma_2^2, \dots, \sigma_m^2)$
 - $1,96\sigma_i = \delta_i \overline{y_i}$

with:

- $\circ \ \overline{y_i}$: mean measurement at point p_i
- $\circ \quad \delta_i \text{: uncertainty at the point } p_i$

Data assimilation Best Linear Unbiased Estimator (BLUE)

- Modelling of matrix **B**:
 - Assumption: background errors at points p_i and p_j are more correlated when these points are impacted by the same events

•
$$B_{ij} = \gamma \sqrt{\sigma_i^{2,b} \sigma_j^{2,b}} \rho_0 exp\left(\frac{\rho_{ij}^{b}-1}{L_{\rho}}\right)$$

with:

- $\circ~\sigma_i^{2,b}$: background variance at point p_i
- $\circ \rho_{ij}^{b}$: correlation coefficient of the background at points p_{i} and p_{j}
- $\circ \gamma$: adjustment coefficient
- $\circ~\rho_0$: characteristic correlation coefficient
- \circ L_p: characteristic correlation distance
- $\gamma,\,\rho_0$ and L_ρ are estimated with the χ^2 diagnosis and by minimising the RMSE after cross-validation

Data assimilation

Source Apportionment Least Square (SALS)

a))Befforeassimilation

- Assumption: modelling errors are mainly due to errors on emissions estimates
- Analysis: $\mathbf{x}^{\mathbf{a}} = \sum_{g}^{G} \beta_{g} \mathbf{x}_{g}^{\mathbf{b}}$ with:
 - $\mathbf{x_g^b}$: background of the source group g
 - β_g : modulation coefficient of the source group g
 - G: number of source groups
- The β_g coefficients are estimated by minimising the cost function J:

 $J(\beta_1, \beta_2, \dots, \beta_G) = (\mathbf{y} - \mathbf{x}^{\mathbf{a}})^T (\mathbf{y} - \mathbf{x}^{\mathbf{a}})$

CASE STUDY

Case study Description

Goal: air quality evaluation on the Île-de-France area

• Scenario:

NTRALELYON

- From 01/12/16 to 30/06/17
- Pollutant: NO₂
- 35 monitoring stations
- 3 groups for the SALS:
 - Traffic
 - Other emissions
 - Background concentration

Domain of the case study

Case study Statistical indices

The analysis is estimated with the leave-one-out cross-validation

Case study Results: Bias, RMSE and Corr

Mixed results for the Bias

TRALELYON

- Improvement of the RMSE (≈ 20 %) and Corr (≈ 10 %)
- The BLUE method leads to the best results

Case study Results: POD and FAR

- Improvement of high concentration (> 200 µg.m⁻³) detection with the BLUE method
 - Increase of the POD from 36 % to 67 % (except for the background stations)
 - Decrease of the FAR from 30 % to 36 %
- However, a significant number of high concentrations remain undetected

Case study Results: hourly concentrations (A1)

Case study Results: hourly concentrations (RN2)

CENTRALE LYON

Case study Results: concentration fields (0h 02/12/2016)

The BLUE method can lead to concentration fields which are not physically consistent because:

- This method is a statistical method which is not governed by physical laws
- This method is an interpolation of the innovation
- The matrix **B** has a *monotonous behavior* regardless of the innovation

CONCLUSION

Conclusions

- Data assimilation:
 - Global improvement of the statistical indices
 - Sometimes an improvement of the *high* concentration detection
 - Occasionally the estimates are worse after DA
- Performances of the 3 DA methods:
 - Globally the BLUE method leads to the best results
 - The best estimates are not always associated to the same method temporally and spatially
- The BLUE method can lead to concentration fields which are not physically consistent

Acknowledgements

This work was done in collaboration with Airparif in the framework of the FAIRCITY project funded by the FUI and the Région Auvergne-Rhône-Alpes

Thank you for your attention [©] Questions ?