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Abstract: In Kovalets et al. (2011), a method was developed to estimate the location and rate of an unknown point 
stationary source of passive atmospheric pollutant in a complex urban geometry. The algorithm was implemented in 
the ADREA-HF Computational Fluid Dynamics code and was applied in a complex urban geometry (the MUST 
wind tunnel experiment). This approach has also been evaluated for the Michelstadt experiment (Tsiouri et al., 2014). 
In the present paper, a major change in the data assimilation code includes the implementation of a two-step 
approach: At first only the source coordinates are analysed using a correlation function of measured and calculated 
concentrations. In the second step the source rate is identified by minimizing a quadratic cost function. The validation 

of the new algorithm is performed for the source location by simulating a wind tunnel experiment on atmospheric 
dispersion among buildings of a real urban environment. Good results of source location estimation are obtained. 
Special attention is given on the grid influence regarding the obtained results. 
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INTRODUCTION 

The characterization of an unknown atmospheric pollutant’s source following a release is a special case of 

inverse atmospheric dispersion problem. Such kind of inverse problems are to be solved in a variety of 

application areas such as emergency response and indoor air quality (Kovalets et al., 2011; Koracin et al., 

2011, Matsuo et al., 2015, Sharan et al., 2012, Singh et al., 2013). 

 

In the urban or industrial scale, few studies have applied Computational Fluid Dynamics (CFD) combined 

with different source estimation techniques (Chow et al., 2008; Keats et al., 2007; Libre et al., 2012; Bady 

et al., 2009). Kovalets et al. (2011) developed an effective variational algorithm of source inversion 
combined with an urban-scale CFD model. The performance of the algorithm was evaluated against 

measurements obtained in MUST wind tunnel experiment and with the Michelstadt wind tunnel dataset 

(Tsiouri et al., 2014). The medium performance of the algorithm in the second case created second 

thoughts about the calculation of the source location and rate as well as the effect of various numerical 

parameters (e.g. grid resolution and numerical schemes). The purpose of the present study is to modify 

the cost function of the source inversion algorithm of Kovalets et al. (2011) for the non-simultaneous 

calculation of the source location and rate. The effects of the grid resolution used for the numerical 

simulations on the obtained results are also investigated. The evaluation and demonstration of the 

proposed methodology is performed on a new experiment called CUTE, the description of which is given 

below. 

 

MODIFICATION OF THE COST FUNCTION OF THE SOURCE INVERSION ALGORITHM 
The use of the Source Inversion (SI) algorithm (Kovalets et al., 2011) for the Michelstadt experiment 

(Tsiouri et al., 2014) produced unsatisfactory results regarding the distance between the true and the 



estimated source location and the true to estimated source rate ratio. The former was in the order to 300 
m, while the latter was in the order of 10. The cause of the discrepancy between the results and the 

measurements was the ‘overfitting’ effect. According to this effect, the calculation errors which are 

introduced by the wrong source location and led to significant underestimation of the concentration were 

compensated by the overestimated source rate. Thus, the resulting quadratic cost function reached 

minimum for the wrong combined solution (source location and source rate). This problem is typical for 

non-linear least squares fitting. In context of data assimilation this problem is especially important when 

the number of measurements is insufficiently small. For example, in Kovalets et al. (2009) the cost 

function was minimized with respect to both wind field and source rate. It was found that for too coarse 

resolution of the monitoring network the Normalized Mean Squared Error of the concentration field 

(closely related to the value of cost function) decreased in the data assimilation process while the error of 

the wind field (being part of the solution vector) increased (Kovalets et al. (2009), p. 3519, par. 1). 
 

A proposed solution to the above mentioned problem is the separation of SI algorithm into the following 

two steps: Step 1: The source coordinates are analysed; Step 2: Only source rate is analysed. 

 

The aforementioned idea is not new and was also expressed by the authors of the paper Brown and 

Robins (2010) in private discussion with Ivan Kovalets. They developed a method which allows the 

source coordinates-only estimation, while unknown source rate was not considered. However, it is not 

clear how they deal with the issue of unknown source rate in calculating posterior probabilities of the 

concentrations. Furthermore, it is known that Bayesian inference is under certain assumptions equivalent 

to least squares approach of source term estimation (see Tarantola, 2005, and more details can be found in 

Kovalets et al., 2013, Sec. 2.1). However from the implementation point of view the methodology in 

Brown and Robins (2010) is very different from that in Kovalets et al. (2011). 
 

In the present study, we propose a modified version of the SI algorithm (Kovalets et al., 2011) by using, 

instead of cost function J defined by formula (7) (in Kovalets et al., 2011), a correlation coefficient of 

measured and calculated concentrations: 
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where  denotes arithmetic averaging over all measurements while minimum is sought over all 

possible source locations. Other notation in (1) as well as everywhere below (until otherwise is stated) is 

similar to that in Kovalets et al. (2011). 

 

Equation (1) is minimized with respect to source coordinates only, while arbitrary source rate, 
sq , is used 

for the minimization procedure. The justification for this exclusion of source rate from the control vector 

is that J does not depend on
sq . Indeed, let us consider two calculated concentration fields 1

cc  and 2

cc  

obtained with different source rates: 1 2

s sq andq . Since equation of concentration transport is linear with 

respect to
sq , then the following relationship holds: 
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From equation (2), it is obvious that the calculated values of J1 and J2 for 1

cc  and 2

cc  will be the same. 

Thus, J does not depend on source rate provided that it is constant. For non-constant source rates, 

1 2( ) and ( )s sq t q t , the values of J1 and J2 generally speaking will be different. Only if 1 2( )and ( )s sq t q t  are 

similar, i.e. if 2 1( ) / ( )s sq t q t const  , then again J1 and J2 will be the same. 

 



Therefore, the usage of correlation coefficient as a cost function (equation (1)) solves the problem of 
separate identification of source coordinates and source rate. An arbitrary value of ‘first-guess’ source 

rate 
0

sq  could be used for calculating the correlation coefficient since it will not influence the solution. 

However, the drawback of the present approach is that prior information can not be used by applying 

regularization terms. 

 

Therefore, in step 1 of the present approach, the source coordinates are identified using the algorithm of 

Kovalets et al. (2011) but with the cost function defined above (equation 1) instead of the cost function of 

Kovalets et al. (2011). In this algorithm, the source location is assumed to coincide with one of the grid 

nodes. The location of the corresponding grid node sk  for which minimum of the correlation coefficient 

(equation (1)) is reached is considered as the analysed source location. 

 

As a second step, the source rate can be identified by minimizing the quadratic cost function with respect 

to 
sq : 
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By using a Source Receptor Function (SRF), similarly applied as in Kovalets et al. (2011) for the node 
sk  (being the solution found in Step 1),equation (3) can be expressed as (cf. formula (15) from Kovalets 

et al., 2011): 
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The solution of problem (4) can obviously be obtained analytically by equating to zero the derivative of J 

with respect to
sq : 
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The solution of (5) is obviously: 
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THE COMPLEX URBAN TERRAIN EXPERIMENT (CUTE) 

The CUTE (Complex Urban Test Experiment) data set includes results from field and wind tunnel 

measurements. The data set is dedicated to test Emergency Response Tools/Atmospheric Dispersion 
Models predicting dispersion processes in urban areas. The second part of the CUTE dataset (CUTE cases 

2 to 4) consists of wind tunnel data measured in the model of the European city centre, where the CUTE 

field test was carried out. 

 

The test was done in the downtown area of a typical Central European city. The area of interest is densely 

built-up with building heights between 25 m and 35 m. There is no significant elevation and no major 

urban greenery in the modelled area. 

 

The CUTE wind tunnel dataset consists of concentration data only. Concentration time series of tracer gas 

from continuous releases were measured at pedestrian level. Concentration measurements are available 

for three cases. Each case represents a different source location. However, only one case (case 3) was 

used during the evaluation of the model. 
 

The chosen source is located between houses near the river on the opposite side of the harbour. Case 3 

was selected because here the source is at a different location than the release during the field test, 

representing a different concentration field and therefore a different test case for model evaluation. For 



case 4, the release was at the downwind side of river, resulting in fewer measurement points and short 
travel times of released material. More information about the experiment can be found in 

http://www.elizas.eu/images/Documents/Model%20Evaluation%20Case%20Studies_web.pdf. 

 

THE SIMULATIONS OF THE INVERSE PROBLEM 

The computational domain for simulating the developing flow and dispersion within and above the three-

dimensional obstacle array extended in the streamwise direction from x = −540 m to 2105.02 m, with the 

upstream wall of the first obstacle at x = 0 m. The simulations were conducted with a domain height of 

6Hmax (Hmax is the maximum building height equal to 108 m), which was sufficiently deep to ensure that 

the flow changes near the surface (within and above the obstacles) were not being moulded (or 

influenced) by the boundary conditions imposed at the top of the computational domain. In the spanwise 

(or y) direction, the computational domain spanned −540 m ≤ y ≤ 1755.02 m. The vertical x-z centre 
plane at y ≈ 300 m contained the ground-level source. 

 

Sensitivity analysis of the solution to the discretization of the computational domain is performed in the 

present paper. A medium and a fine grid have been selected. The number of the control volumes for the 

medium grid is 891,132 while for the fine grid is 1,372,800. The grid was equidistant between the 

buildings and increases logarithmically outside the urban area. For the medium grid the minimum cell 

size in horizontal direction is 12.52 m while for the fine grid it is 9.969 m. Both grids have the same 

vertical resolution with a minimum cell size close to the ground equal to 1.0 m. 

 

The boundary conditions of the 3D domain are the same for the forward and the inverse problems. In 

order to solve the adjoint equation (8) in Kovalets et al. (2011) the inverse problem uses the flow results 

of the forward problem i.e. the mean velocities u, v, w, the turbulent kinetic energy k and the dissipation 
rate ε. 

 

The non-stationary adjoint equation has been integrated in backward direction through the same time 

interval as the forward problem (1000 s) to achieve established distributions of adjoint variables. The time 

step was kept constant and equal to 1 s. 

 

THE RESULTS OF THE INVERSE PROBLEM 

Based on the solution of the adjoint equation, the adjoint variables have been pre-calculated for all 

sensors in the whole computational domain and then stored in binary files. 

 

The performance of the modified algorithm of source estimation was evaluated by two parameters: 

horizontal     
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estimated and the true source locations. The results are presented in Table 1. The medium grid presents a 

rather high discrepancy from the true source location. On the other hand the fine grid predicted perfectly 
the source. These results indicate that even for a small number of sensors (32 in this experiment) the grid 

plays a major role for the performance of the methodology. 

 

 

Table 1. Horizontal and vertical distances of the estimated source location from the true source location. 

 
rH 

(m) 

rV 

(m) 

Medium grid 43.33 14.74 

Fine grid 0 0 

 
 

CONCLUSIONS 

In the present work an existing method for estimating the location and rate of a stationary point source of 

passive nonreactive pollutant in an urban environment was modified and evaluated. A major change in 

the data assimilation code included the implementation of a two-step approach: At first only the source 



coordinates were analysed using a correlation function of measured and calculated concentrations. In the 
second step, the source rate was identified by minimizing a quadratic cost function. The validation of the 

new algorithm was performed for the source location by simulating a wind tunnel experiment on 

atmospheric dispersion among buildings of a real urban environment. Good results of source location 

estimation have been achieved when all available measurements (32) were used to solve the inverse 

problem. It was found that the grid resolution plays an important role for the inverse problem. 
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