EFFICIENT NUMERICAL METHODS IN AIR POLLUTION TRANSPORT MODELLING: OPERATOR SPLITTING AND RICHARDSON EXTRAPOLATION

Zahari Zlatev,

Department of Environmental Science, Aarhus University, Roskilde, Denmark

István Faragó, Ágnes Havasi

Department of Applied Analysis and Computational Mathematics, Eötvös Loránd University and MTA-ELTE Numerical Analysis and Large Networks Research Group, Budapest, Hungary

9-12 May 2016

Harmo17 Conference, Budapest, Hungary

Outline

- The transport-chemistry system
 Operator splitting
 Richardson extrapolation
- Stability issues
- Computational efficiency
- Numerical experiments

The transport-chemistry system

$$\frac{\partial c_i}{\partial t} = -\nabla(uc_i) + \nabla(K\nabla c_i) - \sigma_i c_i + R_i(c_1, \dots, c_m) + E_i(x, t)$$
(1)

- i = 1, 2, ..., q
- Coupled nonlinear system
- Direct discretization by M grid points → large nonlinear system of ODE's with M q unknowns
- \rightarrow Off-the-shelf solvers are not applicable

Operator splitting

Note: the rhs of (1) is a sum of simpler terms
Idea: decompose (split) system (1) into a sequence of simpler problems.

- Divide the time interval into sub-intervals of length $\boldsymbol{\tau}$
- Solve each sub-problem successively at each time step τ
- Always use the solution of the previous subproblem as initial condition

Advantages

- Problem (1) is decomposed into several simpler problems.
- Apart from term R_i, independent linear scalar equations are obtained for each species (M unknowns instead of Mq unknowns).
- Each sub-problem can be solved in a mathematically correct way.

Disadvantages

Local splitting error
 Splitting techniques with smaller splitting error:

- Marchuk-Strang splitting
- SWS splitting

But these are more costly!

Difficulties with the boundary conditions

Problems of the accuracy

p: order of the splitting method
r: order of the applied numerical method
→ The whole approximation will have order min{p,r}

⇒ It is not worth using a higher order numerical method for the sub-problems, unless the splitting method is of higher order, too. But they are expensive.

Question: How to enhance the accuracy in a costeffective way?

Richardson extrapolation (RE)

 $\frac{dy}{dt} = f(t, y), \ t \in [a, b], \ y(a) = y_0,$ Idea: apply the same p-th order numerical method by two different step sizes, and combine the solutions by some weights

Denote the numerical solution at time t_{n-1} by y_{n-1} .

- Perform one time step τ to calculate the approximation z_n of $y(t_n)$ 1.
- Perform two time steps $\tau/2$ to calculate the approximation w_n of 2. $y(t_n)$

3. Combine them as
$$y_n := \frac{2^p w_n - z_n}{2^p - 1}$$

Then $y(t_{n}) - y_{n} = O(\tau^{p+1})$ 4.

Task:

Passive RE

Active RE

Stability issues

- The passive RE preserves the stability properties of the underlying method
- This is not necessarily true for the active RE:
- Trapezoidal rule + RE: not A-stable
- BE + RE: L-stable
- General θ -method + RE: A-stable for $\theta \in [2/3,1]$
- For two implicit RK methods very large stability regions were found.

Computational efficiency

Let $T = N\tau$. Then by time step $\tau/2$, 2N steps are needed.

- Both RE's require ~1.5 times more computations than performing 2N steps with the underlying method.
- If we have the solution with time step τ (N steps), then the passive RE hardly requires more time than performing 2N steps with the underlying method
- When parallelized, the active RE does not require much more time than performing 2N steps with the underlying method

Numerical experiments

We applied RE in the chemical module of UNI-DEM

- Chemical scheme of EMEP with 56 species
- Nonlinear system of ODEs
- Strongly stiff
- 24-hour time interval
- Reference solution: 4-step, fifth-order L-stable implicit RK solver
- Errors measured in the maximum norm

Errors obtained by the backward Euler method + RE

N	BE	BE+ active RE	BE+ passive RE
1344	3.063E-1	7.708E-3	6.727E-3
2688	1.516E-1 (2.02)	1.960E-3 (3.93)	1.739E-3 (3.87)
5376	7.536E-2 (2.01)	5.453E-4 (3.59)	4.417E-4 (3.94)
10752	3.757E-2 (2.01)	1.455E-4 (3.75)	1.113E-4 (3.97)
21504	1.876E-2 (2.00)	3.765E-5 (3.86)	2.793E-5 (3.98)
43008	9.371E-3 (2.00)	9.583E-6 (3.93)	6.997E-6 (3.99)
86016	4.684E-3 (2.00)	2.418E-6 (3.96)	1.751E-6 (4.00)
172032	2.341E-3 (2.00)	6.072E-7 (3.98)	4.379E-7 (4.00)
344064	1.171E-3 (2.00)	1.522E-7 (3.99)	1.095E-7 (4.00)

CPU times (seq) and numbers of time steps (BE method) needed for prescribed accuracy

Global error	BE		BE + RE	
	CPU time	No.of steps	CPU time	No.of steps
[1E-1, 1E-2]	274	5376	304	672
[1E-2, 1E-3]	862	43008	374	1344
[1E-3, 1E-4]	7144	688128	661	5376
[1E-4, 1E-5]	42384	5505024	1428	21504
[1E-5, 1E-6]	265421	44040192	2240	43008

Errors obtained by the sequential splitting (+BE) without and with RE

Ν	Seq. splitting	Seq. spl. + RE
1344	2.154e-1	1.799e-2
2688	1.093e-1 (1.97)	5.862e-3 (3.07)
5376	5.509e-2 (1.99)	1.698e-3 (3.45)
10752	2.764e-2 (1.99)	4.598e-4 (3.69)
21504	1.384e-3 (2.00)	1.199e-4 (3.84)
43008	6.926e-3 (2.00)	3.062e-5 (3.92)
86016	3.464e-3 (2.00)	7.740e-6 (3.96)
172032	1.733e-3 (2.00)	1.946e-6 (3.98)

Further plans

- Extending our theoretical results to further underlying methods (general RK method)
- Stability analysis of the RE when combined with different splittings
- Investigating the possibilities of the RE for solving PDEs