17th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 9-12 May 2016, Budapest, Hungry.

Optimizing initial values and emission factors on mesoscale air quality modelling using 4D-var data assimilation

Isabel Ribeiro | Zoi Paschalidi | Elmar Friese | Hendrik Elbern

Rhenish Institute for Environment Research (RIU - EURAD) at the University of Cologne

How can we improve air quality modelling predictions?

- Optimise chemical initial values (background concentrations)
- **Optimise emission factors** update emissions

This study needs...

Assimilation of observed data (*in-situ* stations, satellites ...)

4D-var data assimilation Inverse modelling

Definition

Data assimilation is an **analysis technique** in which the **observed information** is combined with physical and chemical knowledge of atmospheric processes encoded in the **numerical models**.

The consistency of the system is guaranteed by the inverse simulation of the emitted species and their products.

EURopean Air pollution Dispersion – Inverse Model

Measures the distance between the model state – observations

- background

To minimize!

Describes the emission rate covariances between emitted species at each location

 $\boldsymbol{K} = \boldsymbol{G}\boldsymbol{D}^{1/2}\boldsymbol{D}^{T/2}\boldsymbol{G}$

Standard deviations of the emission factors

G :

Species	Standard deviations $(\delta \mathbf{u} = \ln f)$
SO_2	10.6
NH_3	10.6
NO	5.3
others	13.9

Personal communication with emission experts

D: Background correlations of emitted species

	S02	S04	N02	9	ALD	СНО	NH3	НCЗ	HC5	HC8	ETH	8	ETE	ОLT	OLI	TOL	хчг	KET	SO	DIEN	DRA2	Π	GLΥ	PI
SO2	100	40	12	12	0.4	0.4	0.4	0.4	0.4	0.4	0.4	9	0.4	0.4	0.4	0.4	0.4	0.4	0	0.4	0.4	0	0.4	0
S04		100	12	12	0.4	0.4	0.4	0.4	0.4	0.4	0.4	9	0.4	0.4	0.4	0.4	0.4	0.4	0	0.4	0.4	0	0.4	0
NO2			100	26	8	8	7	8	8	8	8	12	8	8	8	7	7	8	0.4	8	5	0.4	8	0.4
NO				100	8	8	7	8	8	8	8	12	8	8	8	7	7	8	0.4	8	5	0.4	8	0.4
ALD					100	26	5	6	6	6	6	5	10	6	6	5	5	26	0.3	6	5	0.3	26	0.3
нсно						100	5	6	6	6	6	5	10	6	6	5	5	26	0.3	6	5	0.3	26	0.3
NH3							100	5	5	5	5	5	5	5	5	5	5	5	0.3	5	5	0.3	5	0.3
HC3								100	23	23	23	5	18	15	15	6	6	6	0.3	18	8	0.3	6	0.3
HC5									100	23	23	5	18	15	15	6	6	6	0.8	18	8	0.8	6	0.8
HC8										100	23	5	18	15	15	6	6	6	0.8	18	8	0.8	6	0.8
ETH											100	5	18	15	15	6	6	6	0.8	18	8	0.8	6	0.8
0												100	6	5	5	5	5	5	0.3	5	5	0.3	5	0.3
EIE													100	23	23	6	6	10	15	18	5	15	10	15
														100	100	5	5	6	15	5	10	15	6	15
															100	100	24	5	03	5	5	0.3	5	03
XYL																100	100	5	0.3	5	5	0.3	5	0.3
KET																	100	100	0.3	6	5	0.3	26	0.3
ISO																			100	0.8	18	40	0.4	40
DIEN																				100	5	15	6	15
ORA2																					100	15	5	15
LIM		>10	%	>19	%	< 19	%															100	0.3	40
GLY																							100	0.3
API																								100

Case study

Case study: Po valley (10-12.07.2012)

EC FP7 PEGASOS campaings

Case study: observations

Zeppelin data: NO₂, O₃, CO

Ground stations observations AirBase – the European air quality database $(NO_2, O_3, CO \text{ and } SO_2)$

Case study: Zeppelin NT flight pattern

How campaign data can indicate corrections to the model?

European domain (15 km)

Case study: results (routinely observations)

 Δ (analysis – background)

Emission factors corrections (NO)

Allows the update of emission inventories

Case study: results (routinely observations)

Emission factors corrections (NO)

4D-var in high resolved grids identify emission patterns

Case study: results (assimilation of Zeppelin campaign)

Hovmøeller plot Resolution: 1 x 1 km² 10 min

- In the mixed layer, the observed NO₂ concentrations are higher than the analysed ones, up to 300-400 m. (may be due to problems of PBL height simulation WRF parameterization)
- Analysis (background colour) match with the airborne data in upper altitudes (500-700m) until around 8:00, as well as at close to 300 m until 6:00.

Aerosols

Optimization of:

Po Valley (Feb. 2015)

Initial values

Emission factors (under development)

Aerosols – initial values optimization

European domain (15×15km²)

Aerosols – initial values

Δ = analysis – background

Aerosols – initial values optimization + gas phase

- $IV_{aerosol} + (IV+EF)_{gas-phase}$ improved the model results (RMSE decreased ~ 5 μ g.m⁻³)
- EF optimization for aerosols is the key to assume daily profile of aerosol concentrations

$$J(x_{o}, e_{o}) = \frac{1}{2} [x_{o} - x_{b}]^{T} \mathbf{B}^{-1} [x_{o} - x_{b}] + \frac{1}{2} \sum_{i=0}^{N} \left([HM_{i}(x_{o}) - y_{i}]^{T} \mathbf{R}^{-1} [HM_{i}(x_{o}) - y_{i}] \right) + \frac{1}{2} [e_{o} - e_{b}]^{T} \mathbf{K}^{-1} [e_{o} - e_{$$

- Assimilation of emitted species and their products (space and time)
 good performance
- Join optimisation of IV and EF to improve AQ predictions
- Application in high resolved grids (up to 1×1 km²)
- Contribute to correct emission inventories

Thanks for your attention!

