

Evaluation of model performance using new deposition schemes in the Random displacement Particle model PELLO using Fukushima power plant accident data

Pontus von Schoenberg¹ Håkan Grahn¹ Peter Tunved²

- 1. Dispersion modelling Group, CBRN Environment and protection, Swedish Defense Research Agency, FOI Sweden
- 2. Department of Environmental Science and Analytical Chemistry, ACES Stockholm University, Sweden

Content

- PELLO dispersion model
 - Radiation preparedness system in Sweden
- Improved particle dynamics
 - Below cloud scavenging
 - In cloud scavenging
- Comparison with Fukushima NPP accident data
- Improved model

PELLO – Stochastic particle model

- Dispersion model for regional to global scales
- Developed at Swedish Defense Research Institute, FOI
- Used in the Swedish radiation preparedness system at the Swedish radiation Authority, SSM
 - Run operationally at the Swedish meteorological and Hydrological institute, SMHI

PELLO – Stochastic particle model

- Lagrangian Random Displacement Model (RDM)
- The source is represented with model particles
- Each model particle have unique properties
 - Mass or amount of Becquerel
 - Size, sedimentation velocity,
 - Time from release (i.e. for radioactive decay etc.)
 - Each model particle represents a great number of real particles with the same properties (or an amount of gas)

Fukushima accident comparison

Model

Measurement (JAEA 2014)

PELLO - size distribution

- Each model particle are randomly given a radius
- All model particles fill up the prescribed distribution
- 1M 100M model particles used normally

Ref: Guide to Global Aerosol Models, 1999 AIAA (American Institute for Aeronautics and Astronautics)

PELLO – Stochastic particle model

- The weather (wind, turbulence, precipitation etc.) controls the particle movements
 - Moved with the average wind (transport)
 - Random displacement step representing the turbulent diffusion (dilution)
- NWP Numerical Weather Prediction models are used
- ECMWF European Centre for Medium-Range Weather Forecasts

NWP – Deposition parameters

Height parameters:

CIWC, Specific Cloud Ice Water Content [kg/kg] **CLWC**, Specific Cloud Liquid Water Content [kg/kg **Ground level parameters:**

LSP, Large Scale Precipitation, [m]

CP, Convective Scale Precipitation, [m]

- Cloud location is calculated
- LSP and CP is distributed in height with aid of CIWC and CIWC Into Height parameters:
- LSP in cloud, LSP below cloud
- CP in cloud, CP below cloud

PELLO – Particle dynamics considered

- Dry deposition
- Wet deposition
 - Height above ground
 - Particle size
- Is this sufficient?
- Mechanism based wet deposition

Residence time as a function of size for atmospheric particles

Ref: Hobbs 2000

Wet deposition

FOI

Wet deposition – below cloud

- Washout (below cloud scavenging)
- Current scheme

 Baklanov and
 Sørensen 2001
- New scheme
 - Seinfeld and
 Pandis 1997

New scheme - below cloud Seinfeld & Pandis

Impaction

Interception

• Brownian diffusion

Wet deposition – In cloud

- In cloud scavenging (rainout)
 - Calculate the amount of water (kg) in the cloud
 - from clwc and ciwc
 - Calculate the amount of rain (kg) from the cloud
 - Calculate fraction of cloud that is rained out (%), FoC
- Particles
 - Calculate how many real radioactive particles that the model particle represent
 - Calculate the fraction of radioactive particles compared to background aerosol within the cloud (%), FoR
 - Assume that all particles with diameter > 100 nm within the cloud was there to create the water droplets forming the cloud
 - Number of all radioactive particles, NoR
- Assume coalesces is the only process for precipitation
 - Washout = FoC*FoR*NoR

Fukushima accident comparison

- Particulate ¹³⁷Cs
- Cesium assumed to attach on the surface of the ambient aerosol – Surface distribution
- Source term from Katata et. al (2014)
 - Source strength variations in time
- Compared with
 - Ground deposition measurements from JAEA
 - Filter measurements in Sweden

Fukushima accident comparison All deposition (wet and dry)

Baklanov and Sørensen 2001

Seinfeld and Pandis 1997

Preliminary results

Conclusions

- Altitude dependent wet removal scheme
 In cloud and below cloud scavenging
- Parameterization still needs improvement
 Representation of emitted particles
- Dynamical change of emitted particles

 Coagulation, condensational growth
- Particles insensitive to wet removal moves into size ranges where they act as condensation nuclei
- Include information about and interaction with background aerosol
- New ways of describing both wet removal and interaction in the dry atmosphere is required

Thank you for your attention

