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Aim
Raise awareness and promote discussion on uncertainty 
mapping in air quality applications

Background
Based on discussions and developments during the FP6 
project Air4EU (www.air4eu.nl)
Discussions on uncertainty and its mapping can be found in 
a number of Air4EU case studies, recommendation 
documents and cross-cutting issue reports
Uncertainty maps are presented on the Air4EU mapping tool 
(www.air4eumaps.info)
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Why do we NOT use uncertainty maps?
Decision makers do not want to 
know about uncertainty
There is not enough information 
for the uncertainty assessment
It may reflect unfavourably on 
the models

Why use uncertainty maps? 
It is at the heart of the scientific method 
to express uncertainty in any result
It is honest and transparent
Provides information on model quality 
Better basis for decision making
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Model description
Model formulation

chemistry, dispersion, etc.

Numerical discretisation
numerical schemes, model resolution, etc.

Input data
Emissions 
Meteorology
Boundary conditions

Surface, horizontal, etc.

Monitoring data 
Data assimilation
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Representativeness
Spatial representativeness

model resolution, subgrid variability

Temporal representativeness
stochastic processes
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Range of parameters for assessing model error

Mean absolute error MAE
Mean square error MSE
Normalised mean square error NMSE
Root mean square error RMSE
Relative percentile error RPE (EU directives)
Bias BIAS
Average normalised absolute bias ANB
Fractional bias FB
Correlation R2, r
Standard deviation SD 
Normalised standard deviation NSD
Regression coefficients slope, intercept
Index of agreement D
Fraction of predictions … FAC2

e.g. Chang and Hanna (2004), Borrego et al. (2007)

Model error is an example of poor spatial sampling of the PDF
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Probability distribution functions
Are used in Bayesian approaches to uncertainty
Describe the probable model result, given a ‘true’ or 
observed value (or visa versa)
Contain all the uncertainty information
Can be used to derive other statistical parameters

EMEP model PDF. Daily mean PM10 
concentrations on the regional scale
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The use of standard deviation (SD) and bias
A PDF is not easy to show in map form, so …
Use SD and bias to describe the normal PDF
NOTE: PDFs in air quality tend to be log-normal rather than 
normal

Standard deviation is useful because…
It can be statistically extracted from any sample
It is similar to RMSE
It can by calculated from ensemble methods
It can be derived from spatial statistical methods such as 
kriging

Bias must be included
Separately or implicitly through, e.g., RMSE
If bias is known it should be removed
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Example maps of model error, legislative applications 
Spatial representation of RPE, Berlin O3 , REM-Calgrid model

RPE interpolated 
between points 

using kriging
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Indicative uncertainty
Presenting maps that are indicative of the standard deviation
Generalised description of the standard deviation based on 
an absolute and a relative standard deviation

222 ),(),( yxMyx RAM σσσ +=

σR and σA can be calculated using:

Expert knowledge, e.g. σR = 25% ( )

M

OM
n

n

i
ii

R

∑
=

−
= 1

21

σNormalised RMSE

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=
n

i i

i
R M

O
n 1

2

)1(
11σSD of the PDF

( ) ( ) ( )

( )2
1 1

2

2

2

2,2/ −

′−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
+

+
=

∑
=

− n

MO
MM

n
nt

n

i
ii

MSD
nM σ

σ αPrediction intervals

Fits to scatter plots

IntroductionIntroduction

Sources of Sources of 
uncertaintyuncertainty

Uncertainty Uncertainty 
parametersparameters

Uncertainty Uncertainty 
mappingmapping

ConclusionsConclusions

11th Harmonisation Conference 

 
     

     
   C

ambridge 2007



Norwegian 
Institute
for Air 
Research

Uncertainty mappingUncertainty mapping

Example of an indicative 
uncertainty map
Prague, annual mean NO2 ,
ATEM model

Model

Uncertainty

Based on normalised RMSE
σR = 27%
σA = 0
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Application for scenario 
prediction

Predicted concentrations of 
PM10 for 2010 in Rotterdam, 
using the Urbis model 

Model prediction  

Uncertainty due to emissions  

Expert assessment of 
emission uncertainty in the 
various source sectors

Spatial map of the emission 
scenario uncertainty 
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Spatial statistics
Maps may also be made using 
kriging, residual kriging or other 
statistical interpolation methods

Uncertainty map

),(),( yxVaryxM =σ

SD is calculated in these methods 
using the kriging variance

Residual kriging of annual mean 
rural background PM10 using the 

EMEP model and Airbase stations
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Uncertainty in exceedances
Use daily mean uncertainty

probability of exceedance
Use the annual mean uncertainty

spatial representativeness bias
Calculate the uncertainty in the 
number of exceedance days

Number of exceedances, and related 
uncertainty, of the daily mean EU limit 

for PM10 rural background only 

 

Large number of exceedance 
days (> 60 days) 

Large uncertainty in the 
areas removed from 

observations (SD > 35 days)  
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General comments
There is currently no established methodology, parameter 
or presentation method for communicating uncertainty
It will be necessary to have a common parameter(s) for 
representing uncertainty if it is to be useful for 
intercomparison purposes 
Different mapping methods use different methodologies for 
uncertainty assessment

Recommendations
Spatial interpolation of model error is not recommended
Some indication of the uncertainty must always be given, 
preferably as maps but otherwise as a single value
Present assessment maps with a contour or colour 
selection that is indicative of the uncertainty
Bias should be removed from maps when it is known
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Future challenges
Convincing air quality modellers to include uncertainty in 
their maps

- How many presentations of maps at this conference will 
include uncertainty?

Establishing homogenous and accepted methodologies for  
determining and presenting spatial uncertainty
Increase cooperation between atmospheric modellers and 
spatial statistical groups 
Inclusion of uncertainty in the entire process, from 
emissions to risk assessment

- e.g. EU projects HEIMTSA and INTERESSE
Convince decision makers that they should want to know 
about uncertainty
Reformulation of directives and other legislation to 
properly include aspects of uncertainty
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