

An Improved Version of the Microscale Flow Model MISCAM -Evaluation according to VDI Guideline 3783/9

Joachim Eichhorn¹ & Anke Kniffka²

Institute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany ² Meteorological Institute, University of Leipzig, Germany

11th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes (Harmo11) Cambridge, UK, 2 – 7 July 2007

Outline

- The Model MISCAM
- VDI Guideline 3783/9
- Results of the Evaluation
- Discussion
 - Outlook

MISCAM – up to version 5.x

- Threedimensional non-hydrostatic flow model
- k-ε turbulence closure, modified as suggested by Kato & Launder (1993) and Lopez (2002)
- Simple numerical procedures, runs on standard
 PC
- ~ 100 implementations in Europe

MISCAM – version 6

- Optional: Use of predictor corrector advection scheme (*MacCormack*, 1969) for momentum transport
- Optional: Use of corrected upstream scheme (MPDATA, *Smolarkiewicz*, 1989) for transport of scalars (k, ε)
- Minor bug fixes

VDI guideline 3783/9

Prognostic microscale wind field models

- Evaluation for flow around buildings and obstacles
 - General evaluation
 - Traceability
 - Documentation
 - Scientific evaluation
 - Completeness of model equations
 - Requirements on grid structure etc.

VDI guideline 3783/9

Prognostic microscale wind field models

- Evaluation for flow around buildings and obstacles
 - Validation
 - Consistency checks
 - Comparison to wind tunnel data
 - Final evaluation

 $\overline{\mathbf{U}}$

 $\overline{\mathbf{U}}$

 (\mathbf{H})

Consistency checks

- Homogeneity
- Scalability
- Grid resolution
- Grid orientation
- Steady state

Consistency checks

Steady state:

Upstream advection acted as an accelarator of the overall convergence towards a steady solution ⇒ need to modify internal steady state criterion ⇒ ~15% increase of number of time steps ⇒

 $\overline{\mathbf{U}}$

U

Consistency checks

- Homogeneity
- Scalability
- Grid resolution
- Grid orientation
- Steady state

Comparison to wind tunnel data - all data points

	Hit rate % (required according to guideline: 66)			
Test case	u	V	W	
C1 (Beam)	86		96	\odot
C3 (Cube, 270°)	94	98	93	\odot
C4 (Cube, 225°)	85	76	81	٢

Comparison to wind tunnel data - all data points

	Hit rate % (required according to guideline: 66)			
Test case	u	V	W	
C5 (Cuboid)	77	90	87	٢
C6 (Array of obstacles)	92	68	81	\odot

Comparison to wind tunnel data - near field

	Hit rate % (required according to guideline: 66)			
Test case	u	V	W	
C1 (Beam)	70		88	
C3 (Cube, 270°)	90	96	88	
C4 (Cube, 225°)	76	62	66	8

Comparison to wind tunnel data - near field

	Hit rate % (required according to guideline: 66)			
Test case	u	V	W	
C5 (Cuboid)	74	86	79	(
C6 (Array of obstacles)	n.a.	n.a.	n.a.	

Comparison to wind tunnel data

Asymmetry of distribution of hit rates (C4):

- Wind tunnel inflow direction deviates from diagonal orientation (223° instead of 225°)
- Change of results for inflow direction 223°:

	Hit rate % (required: 66)			
C4 (Cube, 223°)	U	V	W	
All data points	$85 \rightarrow 84$	$76 \rightarrow 81$	81 → 81	\odot
Near field	$76 \rightarrow 76$	$62 \rightarrow 68$	$66 \rightarrow 67$	\odot

Comparison to wind tunnel data

- Array of obstacles (C6):
- Speculation!
 - Wind tunnel inflow probably not in x-direction
- Model run for inflow direction 250° gives:

	Hit rate % (required: 66)			
Test case	u	V	W	
C6 (array of obstacles)	92 → 93	$68 \rightarrow 84$	81 → 81	\odot

Comparison 5.02 \leftrightarrow 6.00, hit rates

	Hit rates % (5.02)			
Test case	u	V	W	
C1 (Beam)	86 (<mark>87</mark>)		96 (<mark>95</mark>)	٢
C3 (Cube, 270°)	94 (<mark>93</mark>)	98 (<mark>97</mark>)	93 (<mark>93</mark>)	\odot
C4 (Cube, 225°)	85 (<mark>84</mark>)	76 (<mark>76</mark>)	81 (<mark>81</mark>)	٢

Comparison 5.02 \leftrightarrow 6.00, hit rates

Hit rates % (5.02)			
u	V	w	
77 (77)	90 (<mark>88</mark>)	87 (<mark>86</mark>)	
92 (<mark>93</mark>)	68 (<mark>67</mark>)	81 (<mark>81</mark>)	
	u 77 (77) 92 (<mark>93</mark>)	u v 77 (77) 90 (88) 92 (93) 68 (67)	u v w 77 (77) 90 (88) 87 (86) 92 (93) 68 (67) 81 (81)

Discussion

- Improvement of advection schemes results in marginal improvement of simulates flow field.
- Flow separation at building edges still not reproduced satisfactorily .
- Both MISCAM versions fulfill requirements of the guideline only after correction of inflow profile for case C4.
- No significant deviations between evaluation results for version 5 and 6.
- Users are advised to use version 6 due to higher credibility of results.

Discussion

- Quality of wind tunnel data must be carefully evaluated
- Model developers are advised to carry out validations beyond the requirements of the guideline
- An additional guideline for dispersal models is still missing but is considered necessary

Outlook

- Evaluation results of other developers?
- Alternative data sets?
- Revision of the guideline should include an evaluation of the turbulence closure.
- A comparison of complete wind vectors might be more meaningful than the point by point comparisons of Cartesian wind components.