Measurements and CFD simulations of flow and dispersion in urban geometries

V. Garbero^{1,2}, P. Salizzoni^{1,2}, L. Soulhac¹, P. Mejean¹ and R.J. Perkins¹

¹LMFA – Ecole Centrale de Lyon

² DIASP – Politecnico di Torino

(A)

Introduction: Sirane / Siranerisk

SIRANE (Soulhac, 2000) Operational model for air quality control and management in urban areas

Torino city center

Urban dispersion modelling require the ability to predict the plumes behaviour in urban areas at local scale

t [hours]

Introduction: Sirane / Siranerisk

Decoupling of the computational domain

✓ urban canopy

 \checkmark

external atmosphere

These two regions are characterised by different dispersion processes

Mass exchange parametrisations

Between the urban canopy and the overlying atmospheric flow (Salizzoni et al., 2007)

b) Within the urban canopy

- intersections

c) Large squares Can we define a boundary between urban canopy and the external flow? **Objective of the study**

Investigate the pollutant exchange mechanisms within the urban canopy

Wind-tunnel experiments and Computational Fluid Dynamics simulations

- investigate flow dynamics and pollutant dispersion in typical urban configurations, pointing out the influence of the geometrical layout
- to evaluate CFD's performance in simulating flow and dispersion in complex geometries

Experimental setting

Recirculating wind tunnel at the Ecole Centrale of Lyon

Dimensions: 14m x 2.5 m x 3.7m

The external flow simulates a neutral atmospheric boundary layer

$$U(z) = \frac{u_*}{k} \ln\left(\frac{z-d}{z_0}\right)$$

✓ scale factor1:400
✓ friction velocity u_{*}=0.27 m/s
✓ roughness length z₀=0.5 mm
✓ displacement height d=35 mm

Experimental setting

ence Flow field measurements have been performed by Laser Doppler Anemometer (3000 Hz)

Concentration measurements have been performed by Flame Ionisation Detector (300 Hz)

along the street parallel to y-axis at z=H/2

Numerical set up

Numerical simulations have been performed by means of RANS CFD code, based on the volume finite method

K-ε turbulence model Periodic domain⁽¹⁾ Inlet and outlet: periodic condition Lateral and top: symmetrical condition Bottom: rough wall condition

⁽¹⁾ Only for the intersection; for the square, as the configuration is not symmetric all the domain is simulated

ference **Problem setting – Mass exchange within the canopy** SIRANE / SIRANERISK **Critical condition for the dispersion model** Wind direction = 0° ground level roof level 800-800-100 100 55 55 10 10 5.5 5.5 400 400-0.55 0.55 0.1 200-0.1 200 0.055 0.055 0.01 0.01 0 0.0055 0 0.0055 0.001 0.001 200 -400 -200 400 -400 200 -200 400

Wind parallel to x-axis

Obstacles simulating blocks of buildings : $H=50 \text{ mm } L_x=L_y=5H=250 \text{ mm}$ Variation of the **spacing S** between the obstacles

Results: intersection – velocity field

Transversal profiles at z=H/2 of the mean velocity U. (a) Conf-1; (b) Conf-3

Results: intersection – velocity field

Results: intersection – velocity field

Mean velocity field in the horizontal plane at z=H/2 (a) Conf-1; (b) Conf-3

•Similar topology for the different configurations

•The flow within the intersection is parallel to external wind and drives the recirculating motion into the adjacent streets

Comparison with a previous study

Hoydysh and Dabberdt (1994)

Config 1 : $S_x / S_y = 2$

Config 2 : $S_x / S_y = 1/2$

ference

The horizontal dispersion is controlled by the dimension of the exchange interface $(\mathbf{S}_{\mathbf{x}})$

 $S_x/H=1$ [conf-1, conf-3] skimming flow regime: limited exchange phenomena

 $S_x/H=2$ [conf-2] wake interference flow regime: vortices induced by obstacles interact with mean flow, enhancing mass exchange and smoothing concentration distribution

Results: square – velocity field

rence Mean velocity field in the horizontal plane at z=H/2 (CFD)

Results: square – velocity field

Transversal profiles at z=H/2 of the mean velocity U at different positions

Results: square – dispersion

Transversal profiles of mean concentration for different positions at z=H/2

Mean component of the velocity field transports pollutants witin the intersecton along the stream-wise axis

rence

Fluctuating component of motion diffuses pollutants and makes homogeneous the concentration within the square

Conclusions

Flow patterns and plume spreading are strongly affected by the geometrical layout.

For $S_x/H=1$ skimming flow regime takes place; decoupling between the flow within the intersection and that into the adjacent streets : limited the mass exchange.

For $S_x/H=2$ a wake-interference flow regime; interaction between shear generated insabilities and recirculating flow in the adjacent street : enhanced mass exchange.

Numerical simulations describe quite well flow pattern in complex geometries when the obstacles are sufficiently packed together.