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INTRODUCTION 
Atmospheric dispersion models will always be uncertain due to the inevitable uncertainties 
associated with input data and physical formulations. It is important, however, to try to 
quantify such uncertainties in order to ensure more trust and transparency of accuracy in the 
modelling result. This paper deals with calculations of uncertainty in association with a newly 
developed dispersion model for open roads called WORM (Weak Wind Open Road Model).  
 
THE WORM MODEL 
The WORM model is an integrated Gaussian puff/plume model for calculating hourly average 
concentrations from open roads and highways in an arbitrary set of (nearby) receptor points. 
The model is thus similar to other well-known integrated Gaussian line source models, such 
as e.g., the CAR-FMI model, CALINE-4 model etc. In contrast to these models, however, the 
WORM model has been developed specifically with the aim of producing concentration 
values with some calibrated quantification of their uncertainties. More specifically, the 
WORM model aims at producing, for each receptor point, not a single concentration value, 
but rather a range of concentration values in the form of an ensemble, approximating a 
probability distribution of the conceived underlying, but unknown, true concentration. 
 
The current version of the WORM model consists of the following system components: 
 

• An emission pre-processor 
• A pre-processor for meteorological data 
• A background concentration pre-processor 
• An integrated Gaussian puff/plume type of dispersion model 

 
The emission pre-processor generates hourly emission data (Q in g/ms) for each lane of the 
roadway based on traffic data (AirQUIS, 2005). The background concentration pre-processor 
generates hourly background concentrations for the road, based on using nearby (upwind) 
background stations, or urban/regional scale models (AirQUIS, 2005). Background 
concentrations are added to the WORM model concentrations to make them comparable with 
local (roadside) air quality observations. 
 
A meteorological pre-processor calculates meteorological parameters such as horizontal and 
vertical diffusivities (σu, σv, σw), mixing height (Hmix), Lagrangian time scales (TLx, TLy, TLz), 
friction velocity (u*), temperature scale (θ*) and Monin-Obukhov length scale (L), etc., based 
on Monin-Obukhov similarity theory, and hourly data for local wind speed and stability 
(vertical temperature gradient) (AirQUIS, 2005; Walker, S.E. and J. Berger, 2007). For the 
current version of the WORM model, a minimum value of horizontal plume diffusivity (σu 
and σv) equal to 0.5 m/s is used. 
 
The dispersion model calculates hourly average concentrations in one or more receptor points 
by integrating a Gaussian puff or plume function along each lane of the road, adding up the 
contribution from each lane. The Gaussian plume function with dispersion parameters σy and 



Proceedings of the 11th International Conference on Harmonisation  
within Atmospheric Dispersion Modelling for Regulatory Purposes 

Page 27 

σz is used whenever the slanted plume approximation (σx/x << 1) is valid, but the model 
switches to a puff formulation, with dispersion parameter σx along the downwind x-axis, in 
low wind speed conditions, when the slanted plume approximation is no longer valid. Thus, 
the concentration in a receptor point r = (xr, yr, zr) is calculated by: 
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where Q is the emission intensity (g/ms), Ueff is the plume effective wind speed (m/s), Heff is 
the plume effective height above ground (m), and where the coordinates of the receptor point 
and dispersion parameters in the integrand generally depends on the position s on the road, 
and time t since release. The concentration is obtained by integrating all the infinitesimal 
puffs over the length S (m) of the road, during the current hour (T = 3600 s). The integral is 
calculated numerically by using a highly accurate Gaussian quadrature routine. 
 
In the model, growth of dispersion parameters σx = σy and σz are calculated based on 
atmospheric background turbulence (AirQUIS, 2005; Walker, S.E. and J. Berger, 2007), with 
horizontal and vertical initial sizes of puffs or plumes, σx0 = σy0 and σz0, calculated by the 
same semi-empirical equation for traffic-originated turbulence as used in the CAR-FMI 
model (Härkönen, J. et al., 1996). 
 
A comprehensive evaluation of the WORM model is given in Berger, J. et al. (2007) (this 
volume), where several open road models are compared using a Nordic data base of observed 
and model calculated values (the NORPAC study).  
 
QUANTIFICATION OF UNCERTAINTIES 
The WORM model is typically used to calculate hourly average concentrations in receptor 
points at most a few hundred meters away from the road. This makes the output concentration 
dependent on input data (emission, meteorology and background value) for the current hour, 
but virtually independent of data from previous hours. The model output concentration for 
each hour, can thus be viewed as a function of the input data from the current hour only. 
 
If we let all input and internally calculated variables in the model for the current hour be 
denoted by the vector θ = (θ1, θ2,…, θn), the corresponding hourly average model output 
concentration Cr in a given receptor point r = (xr, yr, zr) can be written Cr = Cr(θ1, θ2,…, θn). 
The typical approach in modelling is then, for each hour, to run the model using a set of 
nominal input and model calculated data 0 0 0 0

1 2 n = (θ , θ , ..., θ )θ  to produce model output 
concentrations 0 0 0 0 0

r r r 1 2 nC  = C ( ) = C (θ , θ , ..., θ )θ  in one or more receptor points. The model results 
are usually given without any calculation, or estimation, of the uncertainties involved, i.e., 
errors or uncertainties associated with input and model calculated variables, and with the 
resulting model concentration values.  
 
One of our aims in the development of the WORM model, however, as for other air pollution 
models in the future, is to produce concentration results with some form of quantification of 
the uncertainties involved. Uncertainties are generally best-treated using statistics and 
probability. Thus, describing uncertainties in results produced by a model generally means to 
assign probabilities to a range of possible model concentration values, instead of just 
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producing a single model result (with probability 1). The target is thus to provide model 
output concentrations, not as single numbers Cr, but rather as discrete or continuous 
probability distributions πr(c) of different values.  
 
A model concentration result Cr is uncertain due to inevitable uncertainties associated with 
the model variables θ = (θ1, θ2,…, θn), and with the model formulation itself. These can 
generally be described using Bayesian statistics (Box, G.E.P. and G.C. Tiao, 1992). If 

t t t t
1 2 n = (θ , θ , ..., θ )θ  denotes the correct (best input or true) values of the model variables for the 

current hour, and Tr denotes the correct or true concentration in receptor point r, we may write  
 
 t t t t

r r r r 1 2 n rT  = C (θ ) + ε  = C (θ , θ , ..., θ ) + ε      (2)  
 
where εr denotes the model formulation error, i.e., the error induced by the model equations 
themselves, and not due to errors in the model data. If we are willing, and able, to put 
Bayesian subjective (prior) probabilities on all the model variables θi, for i = 1,…,n, and on 
model formulation errors εr, we obtain a Bayesian subjective (prior) probability distribution 
πr(T) associated with the true concentration Tr. 
 
Generating the probability distribution πr(T) in the form of an explicit function, is, however, a 
difficult task. Instead an approximation is sought based on using a discrete set of points, or 
ensemble, {T(1), T(2), …, T(N)}, produced by randomly drawing values from the probability 
distribution πr(T), where N denotes the number of ensemble members (or ensemble size). 
 
Based on the discrete ensemble of N concentration values T(1), T(2), …, T(N), where each 
concentration value is associated with (discrete) probability mass 1/N, we may then calculate 
an estimate for the expected value E(T) by: 
 

 
N

(i)

i = 1

1Ê = T      (3)
N ∑  

  
Similarly, an estimate for the variance Var(T) can be calculated by: 
 

 
N

(i) 2

i = 1

1ˆ ˆV = (T  - E)      (4)
N - 1∑  

 
Standard deviation is obtained by taking the square root of the variance. Using the ensemble 
of concentration values, other quantities associated with the probability distribution πr(T) such 
as different p-percentiles, e.g. the 90%-ile or the 95%-ile, can also be calculated. 
 
The perhaps simplest way to describe πr(T), and to make random draws from it, is to define 
πr(T) using a series of conditional probability distributions associated with the model 
variables θi and formulation errors ε. This can be done recursively, by viewing the model 
variables and calculations as a directed acyclic graph. This is depicted in Fig. 1, showing a 
conceived fragment of the model, where a model variable θk is calculated based on other 
model variables θ1, θ2, …, θj, which have been indexed here from 1 to j for simplicity of 
notation. 
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Fig. 1. Model calculation fragment (part of a directed acyclic graph). 
 
The conditional probability distribution πk(θk | θ1, θ2, …, θj) can then be defined recursively as 
follows. Assuming that the joint unconditional probability distribution π1:j(θ1, θ2, …, θj) is 
already defined in the acyclic directed graph for the variables θ1, θ2, …, θj, and that a 
probability distribution is locally defined for the local model formulation error εk, the 
conditional probability distribution for θk = θk(θ1, θ2, …, θj) + εk is uniquely defined. The 
argument can be repeated until a (conditional) probability distribution has been defined for all 
model variables in the graph, and subsequently also for the last model variable calculated, the 
model output concentration. 
 
This graph oriented recursive definition of the prior probability distribution πr(T) enables us 
also easily to simulate from this distribution, i.e., to draw samples from πr(T). This is done in 
the same manner as we defined the conditional probability distributions above. Consider 
again the directed acyclic graph model fragment given in Fig. 1. If we assume that we already 
have obtained a sample (θ1, θ2, …, θj) from π1:j(θ1, θ2, …, θj), we may draw a sample of θk 
from πk(θk | θ1, θ2, …, θj) by drawing a sample εk from the distribution of the local model 
formulation error, and adding this to the function value θk = θk(θ1, θ2, …, θj,). The resulting 
calculated value of θk will then be a sample from πk(θk | θ1, θ2, …, θj). We may then continue 
this process of calculating (samples of) model variables until we obtain a sample of model 
output concentration T(i), from πr(T). By repeating the procedure N times we obtain our 
ensemble of N model concentrations, representing a set of N independent and identical (exact) 
samples from the prior probability distribution πr(T).  
 
With recent and forthcoming advances in computer parallel processing capabilities, 
calculating a large number of such samples by randomly drawing model variables and 
running the model on a parallel basis, should become more practically feasible in the future. It 
is also important to use available air quality observations to calibrate and adjust the prior 
probability distribution πr(T). This could be done e.g., by making sure that calculated p% 
confidence intervals contains observed concentrations around p% of the time. 
 
RESULTS 
Fig. 2 shows the result of running the WORM model for NOx, using data from an 850 m long  
4-lane roadway at Nordbysletta, close to Oslo, Norway (Walker, S.E. and J. Berger, 2007).  
 
The graph contains hourly average observed concentrations (thick line), for a station situated 
17 m from the roadway at a height of 3.5 m above the ground, together with model calculated 
concentrations for the same receptor point, in the form of an ensemble mean (broken line), 
together with a 90% confidence interval (lower and upper thin lines). The period covered is 3 
February – 10 February 2002, but only hours with wind direction towards the station are 
included. The number of ensemble members used is N = 1000. 
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WORM model results for NOx
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Fig. 2 WORM model results for NOx. 
 
The individual ensemble members are created by drawing the following model variables: 
U10m (wind speed at 10 m), u*, θ*, L, θv = tan-1(σv/u)), θw = tan-1(σw/u)), and initial size of 
plume σy0 (σz0 = σy0/2) using Gaussian probability distributions around each nominal or model 
calculated (derived) value, with standard deviations set to 10% of respective mean values, 
except for U10m, which is locally observed, and where the standard deviation has been set to 
0.15 m/s. The standard deviation of model formulation error has been set to 2 2 2

r20  + 0.3 C⋅ , 
where Cr is the corresponding model calculated concentration. Using this uncertainty model, 
90% confidence intervals have been calculated using the ensembles (lower and upper thin 
lines in Fig. 2), and empirically here they contain the observed concentrations (thick line in 
Fig. 2) in about 85% of the hours. 
 
SUMMARY AND CONCLUSION 
A new integrated Gaussian line source model for open roads (WORM) is presented, which 
produces its output not as single concentration values, but rather as ensembles of model 
calculated values, based on quantification of uncertainties in the model variables and physical 
formulation. Based on such ensembles, ensemble mean values and p% (e.g., p = 90) 
confidence intervals for the true (or observed) concentrations can be calculated. Some 
preliminary, but encouraging, results using data from a 4-lane roadway at Nordbysletta, close 
to Oslo, Norway is presented. 
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