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INTRODUCTION 
There has been significant progress in the deve lopment of suitable modelling strategies for 
predicting pollution dispersion at the local scale in recent years. A particular feature that has 
received attention is the influence of local building topologies on the flow and turbulence 
patterns that are established within networks of urban streets (Dixon et al., 2006). Although 
empirical models may provide representation of some of these types of features, there is a 
growing acknowledgement that in order to properly resolve 3-dimensional flow structures, 
computational fluid dynamics (CFD) models will be required. Such models range from those 
using detailed representation of turbulent processes such as Large Eddy Simulation (LES), to 
Reynolds Averaged Navier Stokes (RANS) models which include parameterisations  of 
turbulent mixing e.g. MISKAM (Eichhorn, 1996). It is fair to say that at the present time only 
RANS provides the rapid simulation times required by operational models. Assumptions 
made in defining a RANS model may however, have an impact on model predictions. If 
decisions are to be derived from such predictions, it is of concern whether or not the model 
can produce reliable results. For example, where an Air Quality Management Area has been 
defined, strategic plans are drawn up to attempt improve air quality. If the pollution dispersion 
model used to test these plans predicts a concentration change, it is important to establish 
whether this change is statistically significant, when including uncertainties in the modelling.  
 
Overall, there is a growing interest in incorporating uncertainty analysis into the overall 
modelling structure for environmental applications. Due to the computational expense of 
many models there is a need to develop global sensitivity and uncertainty methods with 
minimal computational requirements which are capable of determining sensitivity indices that 
can be used for importance ranking of potentially large numbers of input parameters in an 
automatic way. These indices should be capable of representing nonlinear responses to 
changes in input parameters over broad input ranges, as well as parameter interactions. 
Recently the method of high dimensional model representation (HDMR) (Rabitz et al., 1999) 
has been developed to provide such global sensitivity estimates. It provides a detailed 
mapping of the input variable space to selected outputs which is fundamental to global 
sensitivity analysis. Due to its formulation as a set of hierarchical component functions, it also 
provides a possibility to determine sensitivity indices in an automatic way that can then be 
directly used in importance ranking and to explore parameter interactions.  
 
MODEL 
A large field study was conducted in 2003 in the City of York (Boddy et al., 2005) with the 
aim to investigate the influence of background meteorology and building topologies on flow 
and turbulence patterns within urban street canyons. One canyon under consideration was 
Gillygate which has an aspect ratio of approximately 0.8 with high traffic flows and 
significant periods of congestion. The street canyon flow field was simulated using the micro 
scale k-e model MISKAM in Dixon et al. (2006). MISKAM consists of a 3-dimensional non-
hydrostatic flow model and an Eulerian dispersion model.  Within the MISKAM code the 
RANS equations are solved using k-e turbulence closure. Figure 1 shows the grid and the 
building configuration of Gillygate and the surrounding area that were used for the simulation 
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with MISKAM. The building heights are indicated in the legend in m. The measurement 
points are marked as G3, G4 (anemometer in-street data, one on each side of the road) and 
Mast (background wind speed and direction at a height of 19m). A non-equidistant grid was 
used to enable a higher resolution within the area of interest (Gillygate). The compass in 
figure represents direction from and is oriented with respect to the street canyon. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Grid and building configuration around Gillygate as used in MISKAM. 

 
The input parameters under consideration, with ranges shown in brackets, are 1x , the inflow 
roughness length [5...50]cm, 2x , the surface roughness length [0.5...50]cm, 3x , the wall 
roughness length [0.5...10]cm and 4x , the background wind direction [80...100]°. Uniform 
distributions are assumed for all parameters. The selected outputs chosen for illustration of the 
methods are 1y the turbulent kinetic energy (tke) at G3, 2y  the tke at G4 and 3y  the 
horizontal wind component u at G4. Consideration of other outputs and physical 
interpretation of the sensitivities is given in the companion paper Benson et al. (2007). 
 
HIGH DIMENSIONAL MODEL REPRESENTATION 
The high dimensional model representation (HDMR) method is a set of tools explored by 
Rabitz et. al (1999) in order to express the input-output relationship of complex models with a 
large number of input variables. The mapping between the input variables nxx ,,1 …  and the 

output variables ( ) ( )nxx=ff ,,1 …x  in the domain nR  can be written in the following form: 
 
 
 
Here 0f denotes the mean effect (zeroth order), which is a constant. The function ( )ii xf  is a 
first order term giving the effect of variable ix acting independently (although generally 
nonlinearly) upon the output ( )xf . The function ( )jiij ,xxf  is a second order term describing 

the cooperative effects (pair correlated contribution) of the variables ix and jx upon the 

output ( )xf . The higher order terms reflect the cooperative effects of increasing numbers of 
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input variables acting together to influence the output ( )xf . The HDMR expansion is 
computationally very efficient if higher order input variable correlations are weak and can 
therefore be neglected. For many systems a HDMR expression up to second order already 
provides satisfactory results and a good approximation of ( )xf .  
 
There are two commonly used HDMR expansions. Cut-HDMR depends on the value of ( )xf  
at a specific reference point x   and random sampling (RS) HDMR depends on the averaged 
value of ( )xf  over the whole domain. Here, we have applied RS-HDMR, where the higher 
order component functions are approximated by orthonormal polynomials: 

 
 

 
 
 

where, ',, llk  represent the order of the polynomial expansion, ( )ir xϕ , ( )ip xϕ  and ( )jq xϕ  are 

the orthonormal basis functions and i
ra  and ij

pqß  are constant coefficients to be determined 
(Li et al., 2002). The standard RS-HDMR approach has been extended by an optimisation 
method (Ziehn and Tomlin, 2007), which automatically chooses the best polynomial order for 
the approximation of each of the component functions.  
 
The partial variances iD and ijD for sensitivity analysis are calculated from (Li et al., 2002a): 

 
 
 

Once the partial variances are determined sensitivity indices can be calculated as follows: 
 
 
 
where D  is the total variance. The 1st order sensitivity index iS  measures the fractional 
contribution of ix  to the variance of ( )xf . The 2nd order sensitivity index ijS  measures the 

interaction effect of ix  and jx  on the output and so on.  
 
RESULTS 
A fully functional model replacement is first constructed using the RS-HDMR approach. On 
the basis of this model replacement, uncertainty and sensitivity analysis can be performed in a 
computationally efficient way. Only one set of random samples is required in order to 
approximate all HDMR component functions by orthonormal polynomials. In this study a 
sample size of N=1024 using Sobol's quasi-random sampling method (Sobol, 1976) is applied 
to determine the coefficients for the orthonormal polynomials. The optimisation approach 
produces the optimal orders for these polynomials (table 1). The first order component 
functions are mainly approximated by fourth order polynomials. However the second order 
component functions are mainly approximated by second order polynomials (table 1). This 
indicates already that most of the component functions are nonlinear.   
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Table 1. Optimal order of polynomials for approximation of RS-HDMR component functions. 
Output 

1f  2f  3f  4f  12f
 

13f
 

14f
 

23f
 

24f
 

34f
 

1y  G3 turbulent kinetic energy 4 4 4 4 1 2 2 2 2 2 

2y  G4 turbulent kinetic energy 2 4 2 3 1 2 2 2 2 2 

3y  G4 wind component u 4 2 4 4 1 2 3 2 2 3 

 
To prove the accuracy of the second order RS-HDMR model replacement, the relative error 
(RE) between the approximated output and the output response of the full model was 
calculated for another set of 1000 random points. 100% of the approximated output 2y  and 

3y  and 99.4% of the approximated output 1y  were in the 5% RE range. The statistics of both 
the full model and the model replacement also show very good agreement. This demonstrates 
that the model replacement can be used instead of the full MISKAM flow model in, for 
example, Monte Carlo (MC) type analysis. A large sample size can be applied because the 
model replacement is much less expensive to run than the full model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2; Comparison scatter plot (a) and first order component function (b) for output G4 u. 
 
The plots of the HDMR component functions reveal useful information about the input-output 
relationship of the model and can be used for sensitivity analysis instead of widely used 
scatter plots. For example, figure 2a shows an MC scatter plot using the model replacement. 
The amount of scatter indicates that the considered output u at G4 is also influenced by input 
parameters other than the one of interest ( 4x , background wind direction). The exact shape of 
the first order response is not always easy to assess within the scatter. However, figure 2b 
shows the corresponding first order RS-HDMR component function (here approximated by a 
fourth order polynomial). The component function describes the impact of the input 
parameter 4x upon the output acting independently. Thus, the shape (in this case nonlinear) of 
the relationship becomes visible.  This illustrates how much easier the component functions 
are to interpret than standard scatter plots. In addition, partial variances and sensitivity indices 
can be calculated on the basis of the HDMR component functions as shown in equations (4) 
and (5). The sensitivity indices are given in table 2 and can be ranked to show which input 
parameter (or interaction of input parameters) contributes most to the overall variance. 
 
For example, output 3y , G4 u, is mainly influenced by input parameter 4x , wind direction 
(rank 1). In fact, 67.2% of the overall output variance is caused by this parameter. Output 3y  
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is further influenced by input parameter 3x , wall roughness length (rank 2) and 1x , inflow 
roughness length (rank 3). The input parameter 2x , surface roughness length contributes only 
by 4% to the overall output variance (rank 4).  There are only very few second order effects, 
indicating that all outputs are mainly influenced by parameters acting independently. Further 
discussions and physical interpretations of the results can be found in Benson et al. (2007).   
 
Table 2. Sensitivity indices first and second order. 
Output 

1S  2S  3S  4S  ∑ iS  12S  13S  14S  23S  24S  34S  ∑ ijS  

1y  0.253 0.426 0.115 0.161 0.955 0.000 0.012 0.009 0.004 0.002 0.017 0.044 

2y  0.123 0.103 0.612 0.131 0.969 0.000 0.001 0.013 0.001 0.001 0.004 0.020 

3y  0.093 0.040 0.176 0.672 0.981 0.000 0.001 0.009 0.000 0.004 0.009 0.023 

 
CONCLUSIONS 
The complexity of the street scale turbulent flow model restricts its application in connection 
with traditional global sensitivity analysis methods such as Monte Carlo analysis since a large 
number of model runs are required. One run of the full MISKAM flow model can take up to 
40 min on a 3 GHz PC. Local sensitivity analysis methods are not suitable, because of the 
high nonlinearity of the input output relationship and parameter interactions. The RS-HDMR 
method has been shown to provide a straightforward approach to explore the input-output 
mapping and to calculate sensitivity indices in a very efficient way. Because HDMR methods 
treat the model as a black box, they could potentially be used for a wide range of applications 
in environmental modelling. The HDMR method is especially suitable for computationally 
expensive models with a large input space dimension. 
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