
Proceedings of the 11th International Conference on Harmonisation
within Atmospheric Dispersion Modelling for Regulatory Purposes

Page 363

DEVELOPMENT OF A NEW METHODOLOGY FOR IMPROVING URBAN FAST
RESPONSE LAGRANGIAN DISPERSION SIMULATION VIA PARALLELISM ON

THE GRAPHICS PROCESSING UNIT

P. Willemsen1, A. Norgren1, B. Singh2 and E.R. Pardyjak2
1Department of Computer Science, University of Minnesota Duluth, USA

2Department of Mechanical Engineering, University of Utah, Salt Lake City, USA

INTRODUCTION
Recent trends in computing have shifted toward multi-core processors and programmable
graphics processors with highly parallel data paths for processing geometry and pixels.
Multi-core machines are now readily available with 2 cores, but machines with 4, 8, and even
16 cores are projected for the near future. Data parallelism in modern graphics cards is also
increasing with raw performance of graphics processing units (GPUs) surpassing performance
of CPUs. While initially specialized for processing computer graphics, GPUs can be
programmed for general-purpose computations using high level programming languages
similar to C. As a result, GPUs have become useful computational tools providing highly
parallel data paths to accelerate a wide range of scientific and simulation applications.

One area of simulation that could greatly benefit from inexpensive parallelization is
emergency response transport and dispersion modelling in urban areas. For the present work,
we have attempted a GPU implementation of a simple Lagrangian dispersion model based on
the Quick Urban and Industrial Complex (QUIC) Dispersion Modelling System (Pardyjak,
E.R. and M.J. Brown, 2001;Williams et al., 2002; Nelson et al., 2006). The primary objectives
of this work have been: (i) to implement a random walk particle model on the GPU, (ii) to
validate the model against the standard CPU implementation and existing analytical solutions,
(iii) to investigate issues and challenges associated with this unique implementation, and (iv)
to understand the performance gains that can be realized through such an implementation. An
additional immediate benefit of this approach is the real-time visualization of particle
dispersion. Because the domain data are already loaded into the GPU memory, rendering
these data to the screen after each simulation step is a fairly trivial process and affords a
convenient means for visualizing the dispersion field. This is particularly important for virtual
environment applications where a physical system must be integrated with a dispersion model
running in near real-time for applications such as emergency response training exercises. In
fact, the authors and colleagues are using the methodology developed here to model
environmental flows in virtual environments (e.g., Hollerbach, J. et al. 2005.; Kirkman, R., et
al. 2006; Kulkarni, S.D et al. 2007).

Much work has been focused over the last couple of years on utilizing the GPU to solve
problems not associated with computer graphics or rendering. The GPU, and in particular, the
pixel processing (or rasterization) component on the GPU, is a highly parallel stream
processor capable of floating point computations (currently only 32-bit precision). The pixel
processors (also referred to as fragment processors) are ideal for memory bound and compute
bound applications in which the computations can be transformed into a SIMD (single-
instruction, multiple-data) stream computation to be executed on the graphics hardware. On
current hardware, it is possible for 128 fragments to be processed simultaneously. Examples
of using the GPU are numerous in the literature and include computing and applying FFT to
images (Moreland & Angel, 2003), numerically solving the Navier-Stokes equations
(Scheidegger, C. et al., 2005), solving multigrid problems (Bolz, J. et al., 2003; Goodnight, N.

Proceedings of the 11th International Conference on Harmonisation
within Atmospheric Dispersion Modelling for Regulatory Purposes

Page 364

et al, 2003), solving dense linear systems (Galoppo, N. et al., 2005), and cloud dynamics
(Harris, M.J. et al., 2003). Simple particle simulations involving one million particles have
been run at interactive frame rates using the GPU (Kipfer, P. et al., 2004). The common point
of these examples is that algorithm performance on the GPU can outperform the equivalent
CPU computations. However, much effort generally goes into keeping data and computation
on the graphics hardware (and hence off of the CPU) to maximize performance. Our efforts
build on these techniques and work towards creating a viable solution for real-time simulation
and visualization of atmospheric flows.

GPU Simulation Methodology
Computing particle dispersion on the GPU requires that the simulation be constructed to fit
within the constraints of the GPU architecture to take advantage of the highly parallel pixel
processing elements on the GPU. This requires that the computations for performing
advection or any other per-particle processing be coded using a specialized shading
programming language and that all data representing particle positions, wind fields, or other
quantities be transformed into 2D textures. Textures are the primary memory structure on the
GPU normally used to represent 2D images for use in texturing geometry in video games.
However, in the context of general-purpose computation, textures become data sources. Our
primary data source is a 2D array of particle positions. This 2D array represents all of the
particles active within the simulation and is the data that the pixel processors operate on to
perform an advection step. We achieve data-parallelism by programming the pixel processors
to perform particle advection on this 2D array of particle positions. Since there are upwards
of 128 pixel processors, hundreds of particles are operated on simultaneously. After
completion of one simulation time step, all particles in the 2D array will have been advected.
Rather than iterating over all the particles individually as is the case with the CPU
implementation of QUIC, we supply a single advection operation by way of a small set of
pixel programs (called shader programs) and tell the pixel processors to apply that operation
to all of the particles in the 2D particle array as part of the normal screen refresh on the
monitor. After the particles have been advected, we are immediately able to visualize them
and show the results to the user. Note that simulations without visualization increases
performance.

Additional 3D data sources, such as the wind field, are transformed from 3D to a 2D texture
by splaying out the vertical slices of the wind field onto a single plane. To locate the wind
field velocity at or near a particle position, we use GPU texture lookup functions to lookup
the velocity in the wind field texture using the particle’s position as the index. Similar
transformations and operations are performed to obtain the fluctuating wind field quantities.
Our application has been programmed using the OpenGL Shading Language and runs on
Linux, OS X, and Windows machines equipped with a modern 3D graphics card, such as
those made by NVIDIA or ATI. The results reported below were run on a 2.4 Ghz Intel Core
2 Duo Processor with an NVIDIA GeForce 8800 video card.

DESCRIPTION OF THE TEST CASE
The basic validation strategy used here is to compare the GPU implementation of QUIC-
Plume to the CPU implementation and existing analytical solutions for a simple test case. For
validation, an idealized continuous point source release (i.e., steady state, horizontally
homogeneous, neutral atmospheric stability, constant wind speed, and constant eddy
diffusivity) is compared to the classical Gaussian solution. This was previously done by
Singh, B. et al. (2004) for the initial validation of the standard CPU implementation of QUIC-
Plume. For additional details of the test case see Singh, B. et al. (2004). For the idealized case

Proceedings of the 11th International Conference on Harmonisation
within Atmospheric Dispersion Modelling for Regulatory Purposes

Page 365

considered here, the QUIC-Plume model is significantly simplified. The basic equations for
the model are shown below in Eqs. 1-5 (following Rodean, H.C., 1996) where the flow has
been decomposed into mean and fluctuating quantities (i.e., iii uUu '+=).

)1(
2

'' ,
, t

uu
tUxx iip

iipi ∆
+

+∆+=

)2(''' , iipi duuu +=

() ())3(''
2

' 1
2/1

3,131,111 ξελλ
ε

ddtCdtuu
C

du opp
o ++−=

() ())4('
2

' 2
2/1

2,222 ξελ
ε

ddtCdtu
C

du op
o +−=

() ())5(''
2

' 3
2/1

3,331,133 ξελλ
ε

ddtCdtuu
C

du opp
o ++−=

In Eqs. 1-5, the subscript p indicates a particle’s velocity or position at the previous time step,
and idξ are uncorrelated, normally distributed variables with means of zero and standard

deviations of 1. The tensor () () 1det/ −== ijijijij Adj τττλ is the inverse matrix of the symmetric

Reynolds stress tensor ijτ . For the idealized case considered here, 2
*13 u=τ , 02312 == ττ and the

normal stresses are specified through the following relationships: *2uu =σ , *6.1 uv =σ

and *3.1 uw =σ . Co is taken as 5.7 and the dissipation rate is given by khu /3
*=ε , where k is

the von Karman constant.

Analytical Gaussian solutions to the conservation equations for a passive scalar continuously
emitted from a point source are widely available (e.g., Seinfeld, J.H. & S.N. Pandis, 1998).
The selection of the plume dispersion parameters have been applied as described by Singh, B.
et al. (2004). For the test case, 100,000 particles where continuously emitted at a rate Q of
100 particles per second from a spherical source of diameter 0.2 m at a height 70=h m. The
mean streamwise wind speed was set to 21 =U ms-1 and 18.0* =u ms-1. The time step was set
to 1=dt s and the duration of the experiment was 1000 s. Concentration averages were
calculated over 800 s starting 200 s after the beginning of the release for 8, 100 and 140
collecting boxes used in the x, y and z directions over a domain of 100 m x 100 m x 140 m.
The source was located at x = 20 m, y = 49, z = h = 70 m.

Fig. 1; Concentration comparisons (a) along the plume Centerline, (b) laterally at

x/h=0.7and (c) vertically at x/h=0.7.

RESULTS
To compare the Gaussian and QUIC-Plume model runs, the concentrations C have been
normalized using QhCUC /2

1
* = . Fig. 1 shows the comparisons between the GPU

Proceedings of the 11th International Conference on Harmonisation
within Atmospheric Dispersion Modelling for Regulatory Purposes

Page 366

simulations, the CPU simulations and
the Gaussian solution. The GPU and
CPU simulations are nearly identical
with differences potentially resulting
from differences in the random number
generators. Single precision
computations were used in the CPU and
GPU tests since GPUs currently only
support single precision. Both
simulations over predict concentrations
near the source as a result of insufficient
collecting box resolution. This issue was

addressed by Singh, B. et al. (2004) by using a high resolution nested grid near the source.

In addition to the validation exercise, a number of simulations
were run over a range of particle numbers to investigate the
performance improvement associated with running the
simulation on the GPU. Fig. 2 shows the average time required
to advect N particles for both processors (averaged over 1000
advection steps). A significant performance benefit is gained
from the GPU. For simulations with more than 100k particles,
a speed up of three orders of magnitude is realized. Note that
for the version of QUIC-Plume used in these simulations, the
maximum number of particles that could be simulated was just
over 300k. Table 1 shows the time required to run a 30 s
simulation similar to the test case described above. For this simple test case, approximately
3.3M particles can be simulated in real-time. With the visual display turned on, slightly less
than 1 million particles can be simulated in real-time.

CONCLUSIONS & FUTURE WORK
For this work, we have successfully implemented a GPU version of a random walk model and
validated it against a simple dispersion test case. The methodology presented here was applied
to the QUIC-Plume model however, it could be used for any type of Lagrangian particle
model. The GPU results matched the CPU results quite well and the GPU significantly
outperformed the CPU. In addition, it was shown that real-time simulations (and
visualization) of large numbers of particles are feasible for simple flows.

We are in the process of optimizing the performance of the GPU-based dispersion model to
take better advantage of the GPU architecture. Specifically, making changes that will allow
our code to take advantage of Scaleable Link Interface (SLI) GPU configurations. In SLI
configurations, multiple graphics cards (in a single PC) distribute the processing load evenly
across the GPUs providing a 1.9x speed up when a second card is added. It is currently
possible to use up to 4 GPUs with SLI. We also plan to add buildings and higher level
Lagrangian models to our code, as well as implement a Red-Black SOR solver to compute the
wind field on the GPU. The results from our real- time simulation are being integrated into an
immersive virtual environment system for interactive viewing of dispersion simulations.

ACKNOWLEDGEMENTS
The authors gratefully acknowledge the financial support of the National Science Foundation
(grant IIS–0428856) and Department of Homeland Security.

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

100 10000 1000000 100000000

Number of Particles

Si
m

ul
at

io
n

Ti
m

e
(s

)
GPU

CPU

Fig. 2; Average time for GPU & CPU simulations

Table 1. Time required for
a 30 s GPU simulation

N Time (s)
10,000 0.21
100,172 1.1

1,000,000 8.87
2,000,000 17.0
4,000,000 35.3
6,250,000 55.3

Proceedings of the 11th International Conference on Harmonisation
within Atmospheric Dispersion Modelling for Regulatory Purposes

Page 367

REFERENCES
Bolz, J., I. Farmer,E. Grinspun & P. Schroder, 2003. Sparse matrix solvers on the GPU:

Conjugate gradients and multigrid. ACM Computer Graphics (SIGGRAPH 2003),
917–924.

Galoppo, N., N.K. Govindaraju, M. Henson & D. Manocha, 2005. Lu-gpu: Efficient
algorithms for solving dense linear systems on graphics hardware. In Proceedings of
the 2005 ACM/IEEE conference on supercomputing, 1–12.

Goodnight, N., Woolley, C., Lewin, G., Luebke, D., & Humphreys, G., 2003. A multigrid
solver for boundary value problems using programmable graphics hardware. In
Proceedings of the ACM siggraph/eurographics conference on graphics hardware,
102–111.

Hansen, B., Singh, B., Brown, M.J. & Pardyjak, E.R., 2007. Evaluation of the QUIC-URB
fast-response urban wind model for an idealized cubic building array, to be submitted
to J. Wind Eng. Ind. Aero. 2007

Harris, M.J., W.V.I. Baxter, T. Scheuermann, & A. Lastra, 2003. Simulation of cloud
dynamics on graphics hardware. In Proceedings of the ACM siggraph/eurographics
conference on graphics hardware, 92–101.

Hollerbach, J., D. Grow, & C. Parker, 2005. Developments in locomotion interfaces, 2005
IEEE 9th International Conference on Rehabilitation Robotics, 28 June-1 July 2005,
2005, Chicago, IL, 522-525.

Kipfer, P., M. Sega & R. Westermann, 2004. Uberflow: a gpu-based particle engine. In
Proceedings of the ACM siggraph/eurographics conference on graphics hardware,
115-122.

Kirkman, R., M. Deaver, E. Pardyjak & M. Metzger, 2007. Sensitivity Analysis of a Three-
Dimensional Wind Tunnel Design, 2006 ASME Joint U.S.-European Fluids
Engineering Summer Meeting, FEDSM 2006, July 17-20, Miami, FL, pp. 10.

Kulkarni, S.D., M.A. Minor, M.W. Deaver & E.R. Pardyjak, 2007. Output feedback control of
wind display in a virtual environment, Proc. IEEE Intl. Conf. Robotics and
Automation, Rome, Italy, April 10-14, 2007.

Moreland, K. & E. Angel, 2003. The FFT on a GPU. In Proceedings of ACM
SIGGRAPH/EUROGRAPHICS Workshop on Graphics hardware, 112–119.

Nelson, M.A., B. Addepalli, D. Boswell, M.J. Brown, 2006. The QUIC v. 4.5 Start Guide. LA-
UR-07-2799.

Pardyjak, E.R. & M.J. Brown, 2001. Evaluation of a fast-response urban wind model–
comparison to single-building wind-tunnel data. in Proceedings of the 2001
International Symposium on Environmental Hydraulics. Tempe, AZ.

Pardyjak, E.R. & M. Brown, 2002. Fast response modeling of a two building urban street
canyon, 4th AMS Symp. Urban Env., Norfolk, VA.

Rodean, H.C., 1996. Stochastic Lagrangian models of turbulent diffusion, The American
Meteorological Society, Boston, MA, pp. 82.

Scheidegger, C., Comba, J., & Cunha, R., 2005. Practical CFD Simulations on the GPU using
SMAC. Computer Graphics Forum, 24 (4), 715–728.

Seinfeld, J.H. & S.N. Pandis, 1998. Atmospheric chemistry and physics: from air pollution to
climate change, 2nd Ed., Wiley, pp. 1203.

Singh, B., M.D. Williams, E.R. Pardyjak & M.J. Brown, 2004. Development and testing of a
dispersion model for flow around buildings. in 4th AMS Symp. Urban Env. Norfolk,
VA.

Williams, M.D., M.J. Brown & E.R. Pardyjak, 2002. Development and testing of a dispersion
model for flow around buildings. in 4th AMS Symp. Urban Env. Norfolk, VA.

