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INTRODUCTION 
Recent trends in computing have shifted toward multi-core processors and programmable 
graphics processors with highly parallel data paths for processing geometry and pixels.  
Multi-core machines are now readily available with 2 cores, but machines with 4, 8, and even 
16 cores are projected for the near future.  Data parallelism in modern graphics cards is also 
increasing with raw performance of graphics processing units (GPUs) surpassing performance 
of CPUs.  While initially specialized for processing computer graphics, GPUs can be 
programmed for general-purpose computations using high level programming languages 
similar to C.  As a result, GPUs have become useful computational tools providing highly 
parallel data paths to accelerate a wide range of scientific and simulation applications. 
 
One area of simulation that could greatly benefit from inexpensive parallelization is 
emergency response transport and dispersion modelling in urban areas. For the present work, 
we have attempted a GPU implementation of a simple Lagrangian dispersion model based on 
the Quick Urban and Industrial Complex (QUIC) Dispersion Modelling System (Pardyjak, 
E.R. and M.J. Brown, 2001;Williams et al., 2002; Nelson et al., 2006). The primary objectives 
of this work have been: (i) to implement a random walk particle model on the GPU, (ii) to 
validate the model against the standard CPU implementation and existing analytical solutions, 
(iii) to investigate issues and challenges associated with this unique implementation, and (iv) 
to understand the performance gains that can be realized through such an implementation. An 
additional immediate benefit of this approach is the real-time visualization of particle 
dispersion.  Because the domain data are already loaded into the GPU memory, rendering 
these data to the screen after each simulation step is a fairly trivial process and affords a 
convenient means for visualizing the dispersion field. This is particularly important for virtual 
environment applications where a physical system must be integrated with a dispersion model 
running in near real-time for applications such as emergency response training exercises. In 
fact, the authors and colleagues are using the methodology developed here to model 
environmental flows in virtual environments (e.g., Hollerbach, J. et al. 2005.; Kirkman, R., et 
al. 2006; Kulkarni, S.D et al. 2007).  
 
Much work has been focused over the last couple of years on utilizing the GPU to solve 
problems not associated with computer graphics or rendering. The GPU, and in particular, the 
pixel processing (or rasterization) component on the GPU, is a highly parallel stream 
processor capable of floating point computations (currently only 32-bit precision). The pixel 
processors (also referred to as fragment processors) are ideal for memory bound and compute 
bound applications in which the computations can be transformed into a SIMD (single-
instruction, multiple-data) stream computation to be executed on the graphics hardware. On 
current hardware, it is possible for 128 fragments to be processed simultaneously.  Examples 
of using the GPU are numerous in the literature and include computing and applying FFT to 
images (Moreland & Angel, 2003), numerically solving the Navier-Stokes equations 
(Scheidegger, C. et al., 2005), solving multigrid problems (Bolz, J. et al., 2003; Goodnight, N. 



Proceedings of the 11th International Conference on Harmonisation  
within Atmospheric Dispersion Modelling for Regulatory Purposes 

Page 364 

et al, 2003), solving dense linear systems (Galoppo, N. et al., 2005), and cloud dynamics 
(Harris, M.J. et al., 2003).  Simple particle simulations involving one million particles have 
been run at interactive frame rates using the GPU (Kipfer, P. et al., 2004).  The common point 
of these examples is that algorithm performance on the GPU can outperform the equivalent 
CPU computations.  However, much effort generally goes into keeping data and computation 
on the graphics hardware (and hence off of the CPU) to maximize performance.  Our efforts 
build on these techniques and work towards creating a viable solution for real-time simulation 
and visualization of atmospheric flows. 
 
GPU Simulation Methodology 
Computing particle dispersion on the GPU requires that the simulation be constructed to fit 
within the constraints of the GPU architecture to take advantage of the highly parallel pixel 
processing elements on the GPU.  This requires that the computations for performing 
advection or any other per-particle processing be coded using a specialized shading 
programming language and that all data representing particle positions, wind fields, or other 
quantities be transformed into 2D textures.  Textures are the primary memory structure on the 
GPU normally used to represent 2D images for use in texturing geometry in video games.  
However, in the context of general-purpose computation, textures become data sources.  Our 
primary data source is a 2D array of particle positions.  This 2D array represents all of the 
particles active within the simulation and is the data that the pixel processors operate on to 
perform an advection step.  We achieve data-parallelism by programming the pixel processors 
to perform particle advection on this 2D array of particle positions.  Since there are upwards 
of 128 pixel processors, hundreds of particles are operated on simultaneously.  After 
completion of one simulation time step, all particles in the 2D array will have been advected.  
Rather than iterating over all the particles individually as is the case with the CPU 
implementation of QUIC, we supply a single advection operation by way of a small set of 
pixel programs (called shader programs) and tell the pixel processors to apply that operation 
to all of the particles in the 2D particle array as part of the normal screen refresh on the 
monitor.  After the particles have been advected, we are immediately able to visualize them 
and show the results to the user. Note that simulations without visualization increases 
performance. 
 
Additional 3D data sources, such as the wind field, are transformed from 3D to a 2D texture 
by splaying out  the vertical slices of the wind field onto a single plane.  To locate the wind 
field velocity at or near a particle position, we use GPU texture lookup functions to lookup 
the velocity in the wind field texture using the particle’s position as the index.  Similar 
transformations and operations are performed to obtain the fluctuating wind field quantities.  
Our application has been programmed using the OpenGL Shading Language and runs on 
Linux, OS X, and Windows machines equipped with a modern 3D graphics card, such as 
those made by NVIDIA or ATI.  The results reported below were run on a 2.4 Ghz Intel Core 
2 Duo Processor with an NVIDIA GeForce 8800 video card. 
 
DESCRIPTION OF THE TEST CASE 
The basic validation strategy used here is to compare the GPU implementation of QUIC-
Plume to the CPU implementation and existing analytical solutions for a simple test case. For 
validation, an idealized continuous point source release (i.e., steady state, horizontally 
homogeneous, neutral atmospheric stability, constant wind speed, and constant eddy 
diffusivity) is compared to the classical Gaussian solution. This was previously done by 
Singh, B. et al. (2004) for the initial validation of the standard CPU implementation of QUIC-
Plume. For additional details of the test case see Singh, B. et al. (2004). For the idealized case 
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considered here, the QUIC-Plume model is significantly simplified. The basic equations for 
the model are shown below in Eqs. 1-5 (following Rodean, H.C., 1996) where the flow has 
been decomposed into mean and fluctuating quantities (i.e., iii uUu '+= ). 
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In Eqs. 1-5, the subscript p indicates a particle’s velocity or position at the previous time step, 
and idξ  are uncorrelated, normally distributed variables with means of zero and standard 

deviations of 1. The tensor ( ) ( ) 1det/ −== ijijijij Adj τττλ  is the inverse matrix of the symmetric 

Reynolds stress tensor ijτ . For the idealized case considered here, 2
*13 u=τ , 02312 == ττ and the 

normal stresses are specified through the following relationships: *2uu =σ , *6.1 uv =σ  

and *3.1 uw =σ . Co is taken as 5.7 and the dissipation rate is given by khu /3
*=ε , where k is 

the von Karman constant. 
 
Analytical Gaussian solutions to the conservation equations for a passive scalar continuously 
emitted from a point source are widely available (e.g., Seinfeld, J.H. & S.N. Pandis, 1998).  
The selection of the plume dispersion parameters have been applied as described by Singh, B. 
et al. (2004).  For the test case, 100,000 particles where continuously emitted at a rate Q of 
100 particles per second from a spherical source of diameter 0.2 m at a height 70=h m. The 
mean streamwise wind speed was set to 21 =U  ms-1 and 18.0* =u ms-1. The time step was set 
to 1=dt s and the duration of the experiment was 1000 s. Concentration averages were 
calculated over 800 s starting 200 s after the beginning of the release for 8, 100 and 140 
collecting boxes used in the x, y and z directions over a domain of 100 m x 100 m x 140 m. 
The source was located at x = 20 m, y = 49, z = h = 70 m. 
 

     
Fig. 1; Concentration comparisons (a) along the plume Centerline, (b) laterally at 

x/h=0.7and (c) vertically at x/h=0.7. 
 
RESULTS 
To compare the Gaussian and QUIC-Plume model runs, the concentrations C have been 
normalized using QhCUC /2

1
* = . Fig. 1 shows the comparisons between the GPU  
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simulations, the CPU simulations and 
the Gaussian solution. The GPU and 
CPU simulations are nearly identical 
with differences potentially resulting 
from differences in the random number 
generators. Single precision 
computations were used in the CPU and 
GPU tests since GPUs currently only 
support single precision. Both 
simulations over predict concentrations 
near the source as a result of insufficient 
collecting box resolution. This issue was 

addressed by Singh, B. et al. (2004) by using a high resolution nested grid near the source. 
 
In addition to the validation exercise, a number of simulations 
were run over a range of particle numbers to investigate the 
performance improvement associated with running the 
simulation on the GPU. Fig. 2 shows the average time required 
to advect N particles for both processors (averaged over 1000 
advection steps). A significant performance benefit is gained 
from the GPU. For simulations with more than 100k particles, 
a speed up of three orders of magnitude is realized. Note that 
for the version of QUIC-Plume used in these simulations, the 
maximum number of particles that could be simulated was just 
over 300k. Table 1 shows the time required to run a 30 s 
simulation similar to the test case described above. For this simple test case, approximately 
3.3M particles can be simulated in real-time. With the visual display turned on, slightly less 
than 1 million particles can be simulated in real-time. 
 
CONCLUSIONS & FUTURE WORK 
For this work, we have successfully implemented a GPU version of a random walk model and 
validated it against a simple dispersion test case. The methodology presented here was applied 
to the QUIC-Plume model however, it could be used for any type of Lagrangian particle 
model. The GPU results matched the CPU results quite well and the GPU significantly 
outperformed the CPU.  In addition, it was shown that real-time simulations (and 
visualization) of large numbers of particles are feasible for simple flows. 
 
We are in the process of optimizing the performance of the GPU-based dispersion model to 
take better advantage of the GPU architecture.  Specifically, making changes that will allow 
our code to take advantage of Scaleable Link Interface (SLI) GPU configurations.  In SLI 
configurations, multiple graphics cards (in a single PC) distribute the processing load evenly 
across the GPUs providing a 1.9x speed up when a second card is added.  It is currently 
possible to use up to 4 GPUs with SLI.   We also plan to add buildings and higher level 
Lagrangian models to our code, as well as implement a Red-Black SOR solver to compute the 
wind field on the GPU.  The results from our real- time simulation are being integrated into an 
immersive virtual environment system for interactive viewing of dispersion simulations. 
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Fig. 2; Average time for GPU & CPU simulations 

Table 1. Time required for 
a 30 s GPU simulation 

N Time (s) 
10,000 0.21 
100,172 1.1 

1,000,000 8.87 
2,000,000 17.0 
4,000,000 35.3 
6,250,000 55.3  
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