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Abstract: In this work different one and two dimensional numerical advection experiments using second, fourth, sixth and eighth order 
Bott scheme were done. The results from one dimensional numerical advection experiments with different initial functions showed that 
amplitude and phase errors are smallest for the 8th order Bott scheme. Gibb’s oscillations occur in the numerical advection experiments 
when there is sharp spatial gradient in the function profile. One possible way to solve this problem is to include explicit horizontal 
diffusion. Numerical experiments with sinus function showed that numerical diffusion for the same order Bott scheme is greater for the 
sinus function with smaller wavelength. Modified 4th order Bott scheme produces more numerical diffusion when compared to the 6th or
8th order Bott scheme. Results from two dimensional numerical advection experiments showed that amplitude and phase error is smallest 
for the 8th order Bott numerical scheme.  
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1. INTRODUCTION

The prediction of the air pollution is one of many environmental problems in modern society. Air quality models are 
useful tool for analyzing air pollution at different spatial and time scales. Numerical modeling of atmospheric processes 
by Eulerian air quality models requires the solution of the advection equation that is describing the transport of the air 
pollutants in the atmosphere. Numerical advection algorithms implicitly introduce numerical diffusion into air quality 
models (Odman, 1997). Excessive numerical diffusion can produce underestimation of peak concentrations values and 
overestimation of extent of concentration plume. Also, numerical advection schemes can produce non physical oscillation 
(Gibb’s oscillation; Navarra et al, 1994). One of many numerical schemes for solving advection equation was developed 
by Bott (1989a,b). In Bott’s numerical scheme the advective fluxes are computed by utilizing the integrated flux concept 
of Tremback et al. (1987). The change of a concentration in a grid point for a time step is calculated as difference at cell 
boundaries. The fluxes in grid points are calculated by integrating the polynomial fit (a Lagrange polynomial of even and 
odd order) over the neighboring grid points, normalized and then limited by upper and lower values. The Bott’s numerical 
scheme is conservative and positively definite with small numerical diffusion. The area preserving flux form advection 
algorithm was extended to monotonicity by Bott (1992). Numerical results showed that amplitude and phase errors are 
somewhat larger in the monotone advection scheme. Two modified versions of Bott’s positive-definite numerical 
advection schemes were developed by Easter (1993) while Bott’s forward in time, positive-definite, area-preserving flux-
form advection algorithm was extended to higher orders by Costa et al. (1997). The results of the two dimensional 
experiments (purely rotational flow and a purely deformational flow) showed that amplitude and phase-speed errors are 
smaller for the higher order Bott’s numerical scheme. Detailed algebraic description of the Bott numerical schemes can be 
found in Bott (1989a,b; 1992) and Costa et al. (1997). 
 
In this work the analysis of the numerical diffusion produced by the 2nd, 4th, 6th and 8th order Bott scheme will be done. 
Results of the numerical experiments are in Section 2 while in Section 3 are conclusions. 
 
2. NUMERICAL EXPERIMENTS 

One dimensional numerical experiments  
Results from one dimensional numerical advection experiments using different initial functions are shown in Figure 1. 
Courant number was 0.4 in this experiment and results are shown after 125 time iteration in order to compare them with
the results at Figure 5. by Walcek and Aleksic (1998). Time integration scheme in all numerical experiments was explicit 
forward Euler scheme (first order accurate). The best preservation of the amplitude and phase for the left tooth, right 
tooth, triangle-5, triangle-10 and step-1 functions is for the 8th order Bott scheme. Strong numerical diffusion can be 
observed for the step-1 function for all order’s of Bott scheme. But amplitude damping is smallest for the 8th order 
scheme. Similar results for step-1 function can be found in work of Petrova et al. (2007; Fig. 2) for some other numerical 
schemes. Numerical diffusion for the step-10 function is produced by the Gibb’s oscillations that are developing at the 
boundaries of the steep function (Figure 1). The ripple patterns caused by Gibb’s oscillations can, for example, be found 
in the precipitation and cloud fields in the climate models (Navarra et al., 1994). Overall, results from this one
dimensional numerical experiments showed that amplitude preservation by the 8th order Bott scheme is comparable to the 
results from Walcek and Aleksic (1998) study.

Results from numerical advection experiments using step-50 function (width of 50 x; box function) with explicitly 
introduced horizontal diffusion are shown in Figure 2. Results show that advected function is smoothed by the horizontal
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diffusion. Also, the results show that greater smoothing of the function is produced by greater horizontal diffusion 
coefficient. So it is an effective way of reducing Gibbs oscillation with some degradation of the initial shape (amplitude 
damping). Another solution for the problem of overshooting during advection process in air quality models would be to 
apply monotone flux limitation algorithm (Bott, 1992). 
 

Figure 1. Numerical advection experiment results with the 2nd, 4th, 6th and 8th order Bott scheme for different initial functions (Courant 
number was 0.4; 125 time iterations). The functions are: left-tooth-8 (up left), right-tooth-8 (up middle), triangle-5 (up right), triangle-10 
(down left), step-1 (down middle) and step-10 (down right). 
 

Figure 2. Numerical advection experiment results with the 2nd, 4th, 6th and 8th order Bott scheme for step-50 function (width of 50 x;
Courant number was 0.2; 999 time iterations) without horizontal diffusion (normal view, left figure; enlarged view, middle figure) and 
with horizontal diffusion (8th order Bott scheme; diffusion coefficients, 400 m2s-1 and 800 m2s-1; right figure). 
 

Results from the numerical advection experiments for the sinus function with different wavelengths (20 x, 10 x and 4 x)
are shown in Figure 3 and Figure 4. It can be seen that both amplitude and phase of the sinus function with wavelength of 
20 x are best preserved with the 8th order Bott’s scheme (Fig. 3 and Fig. 4; left. EMAX is defined in the Appendix 1).
Second order numerical scheme produces strongest amplitude damping (Fig. 4). It is also interesting to observe the 
existence of the numerical diffusion on the edges of the sinus function for all numerical schemes (smallest for 8th order 
Bott’s scheme). The 2nd and 4th order Bott scheme produces stronger amplitude damping of the sinus function with 
wavelength of 10 x, while the 6th and 8th order schemes exhibit good overall amplitude and phase preservation (Fig. 3 and 
Fig. 4; middle). Finally, results for the sinus function with wavelength of 4 x show that there is a serious numerical
diffusion (amplitude and phase error) for all orders of Bott’s numerical schemes, but that smallest amplitude and phase 
errors are for the 6th and 8th order Bott’s scheme. Based on all three numerical experiments, it can be concluded that 
numerical diffusion is larger in advection experiments for sinus function with smaller wavelength.  
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In the EMEP model (Berge and Jakobsen, 1998; Olendrzynski et al, 2000) the modified version of the 4th order Bott
numerical scheme is implemented (Berge and Tarrason, 1992). Different one dimensional experiments were done in order 
to compare the properties of the modified 4th order Bott’s scheme with the original Bott’s algorithm.  
 
The amplitude of the sinus function with wavelength of 4 x (Fig. 5. left) is strongly damped after 1000 time iterations for 
the original 4th and 8th order Bott’s scheme. The same is valid for the 4th order modified Bott’s scheme in the EMEP 
model. But amplitude damping is a bit smaller for the modified 4th order Bott’s scheme compared to the original 4th order 
Bott’s algorithm (Fig. 6. left). The results for the step-10 function show that there is a overshooting in all numerical 
schemes (Figure 5. middle). 8th order Bott scheme is producing Gibb’s oscillations on the edges of the function while the 
original and modified 4th order Bott scheme are producing overshooting in the middle part of the box function (note: 
statistics EMAX is rising trough time for the modified 4th order Bott’s scheme). Amplitude damping is largest for the 
original 4th order Bott’s scheme (Fig. 6. right) in the numerical experiment for the right tooth function while best 
amplitude preservation is observed for the 8th order Bott numerical scheme.  
 

Figure 3. Numerical advection experiment results with the 2nd, 4th, 6th and 8th order Bott scheme for sinus-20 (wavelength of 20 x; left), 
sinus-10 (wavelength of 10 x; middle) and sinus-4 (wavelength of 4 x; right) function. Courant number was 0.4 (999 time iterations). 
 

Figure 4. Time change of statistical measure EMAX with the 2nd, 4th, 6th and 8th order Bott’s scheme for sinus-20 (wavelength of 20 x;
left), sinus-10 (wavelength of 10 x; middle) and sinus-4 (wavelength of 4 x; right) function. Courant number was 0.4 (999 time 
iterations).   
 

Figure 5. Numerical advection experiment results with the original 4th, modified 4th and original 8th order Bott scheme for sinus-4 
(wavelength of 20 x; left), step-10 (middle) and right tooth-8 (right) function. Courant number was 0.4 (999 time iterations). 

620



Figure 6. Time change of statistical measure EMAX with the original 4th, modified 4th and original 8th order Bott’s scheme for sinus-4 
(wavelength of 20 x; left), step-10 (middle) and right tooth-8 (right) function. Courant number was 0.4 (999 time iterations). 
 

Two dimensional numerical experiments  
Different two dimensional experiments (rotation of the cone; front; cube; point source, deformational flow field test) 
similar to other studies (Bott, 1989; Costa and Sampaio, 1997; Petrova et al, 2007) were done in order to analyze 
numerical diffusion produced by 2nd, 4th, 6th and 8th Bott numerical scheme. Only results from the modified numerical 
experiment (Appendix 2) designed by the Durran (1999; advection of the passive tracer, section 5.7.4.) will be shown. 
Numerical advection experiment in two dimensions was done by successive application of one dimensional algorithm. In 
other words, advected quantities are first updated doing x-direction advection using ‘u’ velocities. These updated values 
are then advected in the y-direction using ‘v’ velocities. The order of advection (x then y, y then x) was changed every 
time step (Strange, 1968). In that way, a 2nd order accuracy is achieved (Skamarock, 2006). 
Results of numerical experiment for the 8th order Bott’s scheme during time integration are shown in Figure 7. (a-e). The 
final positions are shown at Figure 7. (f-i). The phase error at the final time step is smallest for the 8th order Bott’s scheme 
while it is largest for the 2nd order Bott’s scheme (Fig 7a; Fig. 7f; Fig 7i). Beside phase error the amplitude error also 
differs for different orders of Bott scheme. Best amplitude preservation can be observed for the 8th order Bott’s scheme 
(Fig. 7j) while amplitude damping is largest for the 2nd order Bott scheme. From this results it is obvious that  numerical 
diffusion is smallest for the 8th order Bott’s scheme.   
 

a) b) c)                                      d)                                        e) 

f) g) h) i) (j)

Figure 7. Two dimensional numerical experiment results with the 8th order Bott scheme (a) t=0 T. (b) t=200 T. (c) t=400 T. (d)
t=600 T. (e) t=800 T. (f) t=1000 T. (g) t=1000 T; 6th order Bott. (h) t=1000 T; 4th order Bott. (i) t=1000 T; 2nd order Bott. (j) Time 
change of statistical measure EMAX with the 2nd, 4th, 6th and 8th order Bott scheme in the two dimensional numerical experiment 
(Appendix 2).

3. CONCLUSIONS

In this work analysis of numerical diffusion introduced by 2nd, 4th, 6th and 8th order Bott scheme in the advection equation 
was done. Results from one dimensional experiments showed that smallest numerical diffusion is produced by the 8th

order Bott’s scheme. Gibb’s oscillations occur in the numerical advection experiments when there are sharp spatial 
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gradients in the function profile. One possible way to solve this problem is to explicitly include  physical diffusion in the 
advection equation. Numerical experiments with sinus functions showed that stronger amplitude damping is occurring 
during transport of the sinus functions with shorter wavelengths. Modified 4th order Bott scheme have better amplitude 
preservation then original 4th order scheme. But smallest numerical diffusion is produced by 8th order Bott scheme. 
Numerical experiments in two dimensions also confirmed that most precise solution of the numerical advection equation 
can be achieved by the 8th order Bott numerical scheme. 
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APPENDIX 1:

Statistical measure EMAX: 
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APPENDIX 2:

Numerical experiment was very similar to the one by D. Durran 
(1999, Section 5.7.4). Instead constant 4.0 (algebraic expression 
for the r(x,y)) we used constant 6.0 because 8th order Bott’s 
numerical scheme requires constant boundary conditions during 
all time integration steps (note: the initial function in our
numerical test was more narrow than in the original experiment). 
Nx = 100; number of points in x-direction. Ny = 100; number of 
points in y-direction. Nt = 1000; number of time integration 
steps. t = 0.005 s; increment in time domain. x = 0.01 m;
increment in space domain. y = 0.01 m; increment in space
domain. T = 5 s; time integration interval.
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