

- The velocity of the particles is characterised by:
 - a mean component (wind field prediction or diagnostic)
 - a stochastic component (calculated according to *Thomson*, 1987)
- Time history of *SPRAY* particles positions in the atmosphere is stored and used by *Cloud_Shine* to evaluate the direct gamma exposure rates

Harmo'10 Conference - Sissi (Malia) Creta

17-20 October 2005

4

Description of Cloud_Shine post-processor (2)			
· •	Computation of the gamma exposure rate et the energy level E		
$O(E) = C_b(E) I(E) E \mu_a(E) \Phi(E)$			
	• Set of decrete values for the gamma energy range $D = \sum_{energy level j} D(E_j)$		
• Threshold or 'cutting' distance corresponding to $D_{min} = 10^{-20} \text{ Sv.s}^{-1}$			
• Parameters are interpolated into tabulated values of Weng et al. (2003)			
 E.g. ¹³³Xe principal energy levels 79.61 keV and 80.99 keV 			
	D (E)	Gamma exposure rate	Sv.s ⁻¹
	μ _a (E)	Mass coefficient of energy absorption in air	m².kg ⁻¹
	E	Energy level	MeV
	l (<i>E</i>)	Gamma rays intensity	unitless
	$C_b(E)$	Conversion factor (air to body tissues)	Sv.Gy ⁻¹
	Ej	Discrete value j of the energy	MeV
Harmo'10 Conference – Sissi (Malia) Creta 17-20 October 2005 6			

