A Preliminary Investigation Of Model Evaluation Data Needs

John Irwin ${ }^{1}$, William Petersen ${ }^{2}$, and Steven Howard ${ }^{2}$

1) John S. Irwin and Associates*, Raleigh, NC
2) NOAA Atmospheric Sciences Modeling Division**, RTP, NC **In partnership with the U.S. EPA,

Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

October 17-20, 2006
Sissi (Malia), Crete, Greece

* Email: jsirwinetal@nc.rr.con

Building a scientific foundation for sounk ennenmental decisions

- Models of plur ee/puff transport and diffusion describe ง..:; a portion of the real-world variab:it’
- J.: yoal was to develop a quantitative c ${ }^{\text {naracterization of the unresolved variability }}$ and then investigate the data needs for field tracer studies of dispersion for model evaluation investigations.
- How many times do you have to roll a pair of dice to determine that they are "fair"? Experimental investigations of processes affected by random effects must insure the sample size is sufficient for the intended purposes.

$$
C \propto \frac{Q}{U \sigma_{x} \sigma_{y} \sigma_{z}} F_{y}\left(\frac{y}{\sigma_{y}}\right) F_{z}\left(z, \sigma_{z}, H_{e}, Z_{i}\right)
$$

In this investigation, we focused on the following:

- The unresolved variability about the lateral Gaussian plume profile, Fy.
- The unresolved variability in the lateral and vertical puff growth rates, σy and σz.
- The variability in the trajectory of the cispersing material relative to the puff dispersion.
(a) RESEARCH \& DEVELOPN Building a scientific foundation for soun en nmental decisions

Composite Anal, sis ior Project Prairie Grass Experiments
 All the "scatter 7wout the blue line (Gaussian fit) is what a Gaussian oiume model does not characterize.

Exp Looked at the scatter about Gaussian fits to tracer results having dense sampling along arcs.

Project Prairie Grass 50 meter downwind arc results 70 Experiments
\square
Each experiment is an event out of a population and models describe the behavior of the ensemble mean

(5) BESEARCH \& DEVELOPM FN Building a scientific foundation for soun em. hmental decisions

Variability in Puff Dimensions

- 25 experiments
- Looked at the scatter in ratios of observe divided by the predicted (O/P) growth rates of σ_{y} and σ_{z} of tracer dispersing downwind over several sampling arcs out to 5 km
- There were seen to be two sources of variability: random biases (GeoStd = 1.48) from one site to the next, and random variations (GeoStd $=2.00$) on average at any one site

(3)

Here we see a summary for the first 12 hours of a puff (neutral conditic is, winds of $3 \mathrm{~m} / \mathrm{s}$).

The cort entrations have been divided by Cmax at for each hour and the GeoStd values have been divided by the central value of the GeoStd for each hour which equaled 1.37.
Mostly affects near field dispersion.

Wind Field Variability Cell to Cell Wind Field Differences

- Analyzed the differences seen in the initial nine-cell wind directions:
- 10-m winds: Julian days 159-

0000Z Eta12km Forecast 186

- Stdev Wd was < 4 degrees
- Stdev Ws was $<1 \mathrm{~m} / \mathrm{s}$
- 75-m winds: Julian days 155192
- Stdev Wd was < 6 degrees
- Stdev Ws was $<1 \mathrm{~m} / \mathrm{s}$

May 19, 2 nn5
DCA res ilt. .

Summary

- Ncn- -aussian variability can be described as izving a log-normal distribution with a CeoStd of about 2.0.
- The variations in the growth rate have little affect on the centerline concentrations once the mean growth rate starts to slow down, which is around 1 to 3 km downwind.
- The variation in trajectories is much larger than the actual puff dimensions.

The End

Thank you for your attention

DISCLAIMER The research presented here was performed under the Memorandum of Understanding between the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Commerce's National Oceanic and Atmospheric Administration (NOAA) and under agreement number DW13921548. This work constitutes a contribution to the NOAA Air Quality Program. Although it has been reviewed by EPA and NOAA and approved for publication, it does not necessarily reflect their policies or views.

Example Emergency Response Guidance

Together the two plots depict the variability to be seen in the trajectory paths and in the centerline concentration values.

(S) RESEARCH \& DEVELOPN \quad Building a scientific foundation for sonn

Variation of the Centerline GeoStd as a

 function of wind speed and stability, when the growth rates of σ_{y} and σ_{z} are variable and non-Gaussian effects are also simulated.

Relit Trajectory Variability

- Used 0n00Z 24 -hour Eta-12km forecast.
- Trajer, , riss were developed:
- 10-m winds for Julian days 139-158
- $75-\mathrm{m}$ winds for Julian days 155-188
- Nine cells (eight surrounding central release point) to provide a preliminary look at the consequences of wind field variability.
- Scatter in trajectories was compared to puff widths

0000Z Eta-
12km Forecast
 to see if the difference in trajectory locations was larger than the puff width.

Concentration Fluctuations

- for toxic gases - instantaneous peaks can be lethal ... these are short term phenomenon ... turbulence controlled ... most models provide the "timeaverage" result......remember, models cannot predict exactly what actually will be seen... models can only predict the "average characteristics" of what is to be seen....
time-averaged picture

real-time picture

concentration timf-st rit - reeasurements

[^0]
Buildings increnss mixing in complex ways

Models cannot pre $\because \uparrow t \in x_{i c t l}$ what is actually seen... models can only predict the "average char. cle ristics" of what is to be seen.....

USEPA wind tunnel experiment, plan view. Dispersion over building arrays and unobstructed fetch.

USEPA wind tunnel experiment, release at street level in canyon.

What Do "Real" Plumes Look Like?

Analysis of 10-minute concentration values seen for July 22, 1956 from 2200 to 2210 LST.

Results shown are for first four arcs. Solid lines with symbols show measured sulfur-dioxide values. A Gaussian fit is shown for each arc. The resulting plume centerline position, PHIC, and lateral dispersion, Sy , is shown for each arc.

The vertical solid line ill istru 'es not only the transport wind d . ectio indicated by the 2-r wir $^{1} \mathrm{a}_{1} \ldots$ release, but als $\quad \therefore$ a reraç 2 of the PHIC determi ed i diviaually for each arc. Notice that P^{T} - does not really describe we we the centerline will be.

What i:n "real" Plumes Look Like?

Projec Pra is Guass involved a point source release 0.5 meters above the groun. ${ }^{1}$. The experiments were conducted in a manicured nearlyflat fie : near O'Neil Nebraska.

Analysis of 10-minute concentration values seen for July 23, 1956 from 0800 to 0810 LST.

Results shown are for first four arcs. Solid lines with symbols show measured sulfur-dioxide values. A Gaussian fit is shown for each arc. The resulting plume centerline position, PHIC, and lateral dispersion, Sy , is shown for each arc.

The two vertical solid lines illustrates the transport wind direction indicated by the $2-\mathrm{m}$ wind and the average of the PHIC determined individually for each arc.

The Kincaid tracer experiments involved injecting SF6 into the gas exiting up a power-plant smoke stack. The smoke stack was 183 m tall, and the gases were hotter than the air, rose and leveled off at about 300 m above the ground.

.Analysis of 1-hr concentration values seen for April 25, 1980 from 1200 to 1300 LST. Results are shown for four arcs.
Solid lines with symbols show measured SF6 values. A Gaussian fit is shown for each arc. The resulting plume centerline position, PHIC, and lateral dispersion, Sy, is shown for each arc.
The two vertical solid lines illustrates the transport wind direction indicated by the $130-\mathrm{m}$ wind and the average of the PHIC deter. in,u individually for each arc.
The dotted line (second arc) shrws t . effict of differences in transport betwer η wh. ${ }^{+1 s}$ estimated by a wind direc an at he r lease and what actually occurs.

Analysis of 1-hr concentration values seen for May 28, 1981 from 1200 to 1300 LST. Results are shown for four arcs.

Solid lines with symbols show measured SF6 values. A Gaussian fit is shown for each arc. The resulting plume centerline position, PHIC, and lateral dispersion, Sy , is shown for each arc.

The two vertical solid lines illustrates the transport wind direction indicated by the $100-\mathrm{m}$ wind and the average of the PHIC determined individually for each arc.

Summary of Centerline Concentration Fluctuations

Experiment/	Number of Arcs	Average	Standard Deviation	Geometric Average	Geometric Standard Deviation
Near-	23	0.93	0.36	0.86	1.53
Surface		(0.05)	(0.11)	(0.06)	$0.24)$
(Simple					
Near-	14	1.02	0.63	0.88	1.78
Surface		(0.12)	(0.36)	(0.06)	(0.35)
(Complex)					
Elevated	8	0.99	0.64	0.81	2.00
(Simple)		(0.08)	(0.14)	(0.08)	(0.23)
Kincaid	15	1.01	1.25	1.08	2.01
		(0.11)	(0.49)	(0.20)	(0.20)
Lovett	2	0.94	1.05	0.9.	2.17
		(0.18)	(0.06)	(0.13)	(0.07)
Indianapolis	8	1.08	0.76	$0.9)$	1.69
		(0.10)	(0.23)	(0.04)	(0.20)

Variability In inrairie Grass Centerline Concentrations
Project Prairie Grass

Just How Variable Are Wind Directions and Wind Speeds?

$$
C_{o}(\alpha)=\overline{C_{O}(\alpha)}+\Delta c^{\prime}+c^{\prime \prime}(\alpha, \beta)
$$

where

$$
\left.\begin{array}{rl}
\hline C_{O}(\alpha)= & \text { concentration for } \\
& \alpha \text {-conditions averaged over } \\
& \text { all possible values of } \alpha \sigma
\end{array}\right] \begin{aligned}
& \text { represents the measurement } \\
& \Delta c^{\prime}= \\
& \text { errors. }
\end{aligned}
$$

$c^{\prime \prime}(\alpha, \beta)=$ represents the varizolluy due to unresolved physics and processes (" β-effects" or igac-ance).
$C_{r}\left(c^{\prime}\right)=\overline{C_{o}(\alpha)}+\overline{f(\alpha)}+\Delta \alpha^{\prime}$
whiare
$\overline{\mathrm{C}}_{m}^{-}=\overline{C_{o}(\alpha)}+\overline{f(\alpha)=}$ model's average concentration for conditions α.
$f(\alpha)=$ the average deterministic error in the model's estimate for conditions α.
$\Delta \alpha^{\prime}=$ the effects of uncertainty and unresolved variability in specifying the model's inputs.

$$
C_{m}(\alpha)=\overline{C_{o}(\alpha)}+\overline{f(\alpha)}+\Delta \alpha^{\prime}
$$

- A common misconception is that characterization of $\Delta \alpha^{\prime}$ (e.g. Monte Carlo simulation of input uncertainties) is a characterization of $c "(\alpha, \beta)$.
- Characterizing variability due to unresolved physics, c" (α, β), carıica.ly only be deduced through an analysis that involves observations!

[^0]: USEPA Fluid Modeling Facility

