

- Analysis of individual Modelling results (Validation against Obs)
- Intercomparison of Modelling results (if no Obs)
- <u>Ensemble approach (mean/median of the Models)</u>
- Analysis of the variability around the Ensemble
- Validation of the Ensemble model

The Ensemble model is a useful tool in the frame of the Harmonisation of the individual model results.
It is often more robust and looks therefore more appropriate for policy purpose

Policy context: Clean Air For Europe (CAFE)

Launched in 2001 by the European Commission, CAFE is a programme of technical analysis aiming at the development of a long-term, integrated policy advice to protect against negative effects of air pollution on human health and the environment.

Rsulting in Thematic Strategy published Sept 05

Question: Which measures will lead to a cost-effective reduction of air-pollution health-related problems in European Cities? In particular for O3 and PM

CityDelta Objective:

How to include sub-grid effects into a Europe-wide health impact assessment for PM/Ozone?

<u>15 Modelling teams:</u> 7 regional-scale 11 urban-scale

	# of levels	Level		Resolution
CALGRID	11	10m	CITYDELTA	5-10
CAMx	11	10m	CITYDELTA	5-10
CHIMERE local	6: surface-700hPa	SL (50m)	CITYDELTA	5
CHIMERE regional	6: surface-700hPa	SL (50m)	Europe	50
EMEP Unified Model	20: surface-100hPa	1m	EMEP	50
EMEP-v.1	20: surface-100hPa	45m	EMEP	50
EPISODE	6: 25-2500m	2m	CITYDELTA	10
EUROS	4	25m	CITYDELTA	10-50
LOTOS local	3: 0-3500m	ML	CITYDELTA	5-10
LOTOS régional	3: 0-3500m	ML	Europe	50
MOCAGE	47: surface-5hPa	1st level (0-50m)	Paris, Milano	10-50
MUSCAT	22: 0-4400m	1st level (0-33m)	CITYDELTA	_10
MUSE	5	10m	CITYDELTA	10
OFIS	2	ML	CITYDELT	5
REM3 local	4: 0-3000m	SL	CITYDELT	5
REM3 regional	4: 0-3000m	SL	Europ	50
STEM-FCM	11	10m	CITYDEL	5
TRANSCHIM	10	50m	CITYDELTA	5-10
			$\langle \mathcal{O} \rangle$	

⇒ Boundary conditions?
⇒ Input of O3 and precursors in the domain
⇒ Vertical exchanges?
⇒ Paramerisation of vertical mixing
⇒ Biogenic contributions?
⇒ Models calculate biogenic emissions internally

