

AUT/

The distribution of concentrations when an intersection is present is computed applying an empirical formula.

- The total concentration at each point along both sides of the canyon is made up of the direct and recirculation contributions.
- The concentrations across street canyon are calculated with an algorithm based on a very simplified parameterization of flow and dispersion conditions.
- Only the fastest chemical reactions of nitrogen oxides (NO_x) are taken into consideration due to the relatively short time scale of the street canyon.

The distribution of concentrations across the street canyon is approximated by a simplified formula which consists of an aggregation of two terms.

AUT/ LHTEE

- The first term accounts for the case that a well established vortex flow regime governs the concentrations distribution while the second term holds when this distribution is governed by a non vortex flow regime.
- Both terms are computed across the canyon depending on:
 - ➤ the geometry of the canyon, the wind speed and direction at roof level and the vertical turbulent velocity fluctuation at street level.
 - > the fraction of recirculated pollutants and the residence time of pollutants within the canyon.

MMO : general description

MIMO has been evaluated & validated during numerous projects like the EU project "TRAPOS":

AUT/ LHTEE

By intercomparison of numerical results obtained with other models for a square street canyon (W/H = 1).

- ➢ By intercomparison of numerical results for the flow field around a single cube approximating an isolated building, obtained with other models.
- Comparison with filed measurements from a real street in Hanover, Germany (Göttinger Strasse).

	Statistical results of models applications								
LHTEE	Statistice in	stice/intex Mean Annual street level concentration (µg/m³)							
	Models		OBSERVATIONS		OSPM	[S]	EP-SCAM	MIMO	
	Berlin	NOx		104.9	1	96.23	105.84	126.69	
		PM ₁₀		39.4	7	32.19	32.91	44.36	
	Scockholm	NOx		185.06		33.74	166.29	176.76	
		PM _{2.5}		14.0	3	12.59	13.54	13.78	
	London	NOx		415.3	7 2	33.81	279.58	342.67	
		PM _{2.5}		25.7	3	19.59	25.14	24.80	
	Statistical in	dices		BIAS			Correlation Coefficient		
	Models		OSPM	SEP-SCAM	MIMO	OSPM	SEP-SCAM	MIMO	
	Berlin	NO _x	-8.69	0.92	21.77	0.905	0.918	0.917	
-		PM ₁₀	-7.28	-6.56	4.89	0.486	0.552	0.835	
	Stockholm	NO _x	-51.32	-18.77	-8.29	0.995	0.985	0.988	
		PM _{2.5}	-1.44	-0.49	-0.25	0.980	0.951	0.983	
	London	NO _x	-181.56	-135.79	-72.70	0.962	0.956	0.915	
		PM _{2.5}	-6.15	-0.59	-0.93	0.986	0.980	0.970	
		PIM 2.5	-6.15	-0.59	-0.93	0.986	0.980	0.970	

