Regional and Near-source Modeling of Increased NO₂ Emissions from Catalyst-based PM Filters for Heavy-duty Diesel Vehicles in California

Bart Croes, P.E. Chief, Research Division California Air Resources Board

2

Acknowledgements

- California Air Resources Board
 - Alberto Ayala, Ph.D., P.E.
 - Scott Fruin, Ph.D., P.E.
 - Tony Servin
- University of California at Irvine
 - Professor Donald Dabdub
- EPRI

AIR RESOURCES BOARD

– Eladio Knipping, Ph.D.

Pollutants Reduced by PM Filter

	2	6 Reduction	Study
	CO	90%	various
	Total PM	85%	various
	Total VOCs	90%	various
	Total carbonyls	90%	NYDEC
	Formaldehyde	93%	MTC
	Acetaldehyde	82%	MTC
Neticitis 7 (dist) a la semana	Benzene	77%	CARB
5300 ⊖ 0	Total PAHs	80%	NYDEC
	nitro-PAHs	95%	NYDEC
Colifornia Environmental Protection Agency AIR RESOURCES BOARD	an and a second s		8

In a catalysic plus soot filter system, the conversion of NO to NO_2 is a function of both exhaust temperature and fuel sulfur content.

AIR RESOURCES BOARD

Photochemical Modeling Results

15%	20%	25%	30%	50%
% change from baseline (diesel $NO_2/NO_x = 10\%$)				
-1	0	0	0	1
-3	-2	0	2	5
0	1	1	1	2
0	0	2	2	4
-3	na	na	-2	-1
-9	na	na	-8	-6
-6	na	na	-5	-3
-13	na	na	-13	-13
1	6	12	18	41
	15% % chi -1 -3 0 0 -3 -9 -6 -13	15% 20% % change from b -1 0 -1 0 1 -3 -2 0 1 0 0 0 -3 na -9 na -6 na -13 na	15% 20% 25% % change from baseline (diese -1 0 0 -3 -2 0 0 1 1 0 0 2 -3 na na -9 na na -6 na na -13 na na	15% 20% 25% 30% % change from baseline (diesel NO2/NOx -1 0 0 0 -1 0 0 0 2 2 -3 -2 0 2 2 -3 na na -2 -2 -3 na na -2 -2 -3 na na -2 -2 -3 na na -2 -3 -6 na na -5 -13 na na -13

