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INTRODUCTION 

 
In the present study, the 15-min traffic data collected simultaneously at eight main avenues in 
the city of Athens were presented. The data refers to the vehicle category and vehicle speed. 
Using the aforementioned data as input, we applied the CORINAIR methodology to estimate 
emissions of four major pollutants (CO, Benzene, NOX and PM10) in these eight avenues. The 
results reflect the daily variation of the aforementioned pollutants. Based on the above data, a 
Neural Network model was developed. The Neural Network introduced here seems to 
perform adequately in calculating emissions of CO, Benzene, NOX and PM10 while the 
validation of the model showed that the corresponding error (calculated vs Observed values) 
was lower than 3%. The NN model developed in this work seems to be a reliable 
methodology to calculate road traffic emissions in a complex busy avenue environment. 

 
Traffic data 

 
The traffic data used in this paper were collected from eight main avenues in the city 

of Athens. Specifically we measured the speed and traffic flow of seven main vehicles 
categories (catalytic passenger vehicles, non catalytic passenger vehicles, diesel passenger 
vehicles, light duty vehicles, heavy duty vehicles, buses and motorcycles) in a ten hours basis, 
from 7:30 to 17:30, classified every 15’. These are the hours that traffic load is heavy and the 
emissions are in high levels compared to the rest of the day. The aforementioned avenues are 
representative of the whole urban area and a wide range of traveling speeds and traffic flows 
is included. Some of the results of speed-traffic flow measurements are presented in Table 1. 
All represented flows are in vehicles /15 minutes. 

 
Table 1. Maximum, minimum and average value of traffic flow and speed per vehicle 

category. 
  Catalytic Non Diesel Light Heavy Motorcycles Speed
     
 max 122 63 11 11 16 23 14 
Amarousiou min 63 12 1 2 2 1 7 
 average 91 31 6 6 10 12 10 
 max 172 72 14 16 17 21 15 
Amarousiou min 78 18 6 6 2 6 8 
 average 113 36 10 12 9 14 12 
 max 242 74 11 4 34 8 36 
D.Plakentias min 83 28 3 0 9 4 16 
 average 141 48 6 2 22 6 25 
 max 242 109 15 9 32 18 34 
D.Plakentias min 83 26 7 0 17 6 18 
 average 167 56 10 1 25 11 25 
 max 173 64 35 24 24 32 36 
Hrakleiou 1 min 76 12 7 3 6 11 17 
 average 116 39 23 12 13 21 24 
 max 115 54 22 19 14 17 36 
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Hrakleiou 2 min 63 16 4 5 1 5 23 
 average 85 34 9 11 7 10 29 
 max 463 207 74 47 22 123 45 
Kifisias 1 min 254 78 14 7 4 43 25 
 average 368 140 46 24 15 93 31 
 max 587 283 87 61 33 168 37 
Kifisias 2 min 262 20 24 17 3 48 17 
 average 423 163 53 38 18 115 24 
 max 339 209 15 27 49 50 44 
Kymis 1 min 114 40 2 10 15 12 18 
 average 206 88 7 19 31 29 28 
 max 318 169 19 36 49 49 39 
Kymis 2 min 85 28 2 5 10 7 11 
 average 208 87 8 23 32 21 18 
 max 195 96 21 21 17 21 36 
Pentelis 1 min 105 31 4 4 1 3 21 
 average 145 58 12 10 8 11 28 
 max 174 82 27 25 22 32 40 
Pentelis 2 min 74 27 5 1 6 11 18 
 average 131 54 14 11 12 20 31 
 max 136 46 12 21 26 21 37 
Tatoiou 1 min 44 20 1 3 1 3 13 
 average 85 31 5 8 12 9 22 
 max 183 65 19 25 30 47 25 
Tatoiou 2 min 98 30 3 6 5 8 15 
 average 132 50 12 16 19 29 20 

 
Emissions calculation 

Emissions place a significant role for the knowledge of the sources of air pollutants and for 
abatement air quality strategies. In the recent years, the most significant source of pollutants is 
road traffic (Sturm et al., 1997). Given that the air pollutants concentrations are strongly 
correlated to the emissions, the estimation of the daily variation of the road emissions is in 
great interest. In the present study, the above traffic data were used to calculate the emission 
rate of four pollutants (CO, NOX, Benzene, PM10) with major environmental and health 
interest. Emissions rates were calculated by the COPERT (Ntziachristos et al, 2000) 
methodology, and the results are presented in Figures 1a-1d. 
 

 
                        1a                                                                         1b 
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                        1c                                                                         1d 
Figures 1 a-d. Calculated emissions rates using the COPERT methodology   
 

Development of an Artificial Neural Network tool to calculate road emissions 
 

Intending to apply a faster and easier way to calculate vehicles emissions, we developed an 
Artificial Neural Network. We used traffic speed and vehicle’s category traffic flow as input 
parameters, to predict the emission rates of the four aforementioned pollutants (output 
parameters). In their general form, Artificial Neural Networks (ANNs) refer to a parallel 
model architecture able to perform numerical calculations based on distributed processing. 
ANNs are composed from artificial neurons that operate according to a specified transfer 
function. The neurons interact also with each other through the use of neuron connections 
called weight factors or simply weights. Positive or negative weights correspond to 
connections that propagate or suspend, respectively, signals from other neurons. ANNs can be 
trained to perform a particular function by adjusting properly the values of these weights. 
The process of learning in ANNs constitutes a means of dynamic representation of codified 
information in the ANN neurons. In particular, supervised learning aims at minimizing an 
error, or cost, function using certain training algorithms that employ first or/and second order 
partial derivatives. A common approach for numerically calculating the partial derivatives of 
the error function, E(w), is the backpropagation algorithm [1]. According to this training 
algorithm, the partial derivatives of w are estimated for each input pattern (training 
prototype), where w denotes the function parameters, i.e. the network weights. This means 
that in the general case where there are M weights and N prototypes, an M × N matrix with 
partial derivatives should be calculated. It should be noted, that backpropagation is an 
iterative algorithm, thus the above M × N matrix, is calculated at each step during training. As 
for the weight adjustment, it is performed according to the following formula: 

)(1 iiii E www ∇−=+ α , (1) 
where α  is a parameter that delineates the ANNs learning rate and i denotes the 

number of iteration steps. 
The utilization of the second order derivatives is realized with the calculation of the Hessian 
matrix, )(2

iE w∇ , which has great theoretical and practical value. Based on the Hessian 
matrix, more sophisticated training algorithms can be applied [2,3] while the data are 
organized in a way so that unnecessary calculations are avoided, since the estimation of the 
Hessian matrix includes iterative calculations of the same terms [4,5]. 
In our approach we employed a feedforward network architecture which is widely used in 
ANN applications. This is a multilayer architecture, meaning that the artificial neurons are 
organized in layers. Typically, a standard feedforward ANN has an input layer, where data are 
introduced to the ANN, one or more hidden layers, where processing is realised, and an 
output layer, which generates the final results. Another important characteristic of 
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feedforward ANNs is that neuron activation (or signalling) propagates towards one direction 
only and specifically from the input layer to the hidden layers and finally to the output layer. 
The proposed ANN model uses three layers as shown in Fig. 1. The first (input) layer consists 
of seven neurons, one for each input parameter. Heavy duty vehicles and buses were unified 
to one input parameter (named heavy diesel vehicles), in order to improve ANN results, given 
that these two vehicle categories have similar emissions factors. The second (hidden) layer 
consists of 20 neurons that implement the hyperbolic tangent sigmoid transfer function. This 
function generates outputs between -1 and 1 as the neuron’s net input goes from negative to 
positive infinity and is more appropriate for ANN applications on function approximation. It 
should also be noted that the input parameter values are pre-processed in order to be 
normalized so that the inputs and targets will fall in the interval [-1,1]. As for the number of 
the hidden neurons, various architectures were tested (different numbers of neurons and 
hidden layers) but the choice of one hidden layer with 20 neurons provided constantly the 
higher results. Finally, the third (output) layer consists of four linear neurons that correspond 
to the four predicted emission rates. Network training was performed using the Bayesian 
regularisation algorithm [6,7]. This is a supervised learning method that determines the 
optimal network parameters in terms of model generalisation. These parameters, namely the 
weights and biases of the network, are assumed to be random variables with specified 
distributions. The (regularization) parameters are related to the unknown variances which are 
associated with these distributions. Consequently, based on statistical techniques these 
parameters can then be estimated. 

Within this framework the following error function is minimised: 
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where it  are the desired network outputs, io  are the network outputs during training, 
iw  are the network parameters (weights and biases), M  is the number of those parameters 

and N  is the number of the training patterns. The hyperparameters ia  are estimated at each 
iteration according to the following formulas: 
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where γ  is the number of effective parameters and is given by: 
( ) 1

2tr2 −−= HaNγ ,       (5) 
with H  being the Hessian matrix of the error function and can be approximated as 

follows using the Jacobian matrix, J , that contains the first derivatives of the network errors 
with respect to the weights and biases: 

JJH T= .        (6) 
The network parameters iw  are updated according to the Levenberg-Marquardt 

optimisation method: 

[ ] gIJJww
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where I  is the unit matrix, μ  is a scalar parameter [8] and g  is the gradient which can 
be computed as: 

eJg T=         (8) 
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with e  being the vector of network errors. 
The network parameters are initialised using the Nguyen-Widrow method [9] and the two 
hyperparameters, 1a  and 2a , are initially set to one and zero, respectively. Apparently, the 
error function E  is adapted at each iteration, since the hyperparameters ia  are reestimated. 
According to the Bayesian regularization algorithm the training procedure is considered to be 
completed when the effective number of parameters, γ , has converged, indicating that the 
ANN has generalised and not overfitted the training data. 
For training and testing the proposed ANN model the overall dataset was randomly divided in 
two separate sets. The first set, namely the training set, was consisted of 482 samples while 
the second one, the test set, from 50 samples.  
Furthermore, other training algorithms, besides Bayesian regularisation, were also studied. 
Specifically, we tested the resilient backpropagation [10], the scaled conjugate gradient [11], 
the BFGS quasi-Newton [12], the one step secant [13] and the Levenberg-Marquardt [8]. 
However, in all cases Bayesian regularisation proved to be more consistent and robust 
concerning the generated results (Figures 2a-2d). 

 
                        2a                                                                          2b 

 

 
                         2c                                                                         2d 

Figure 2. Emission rates for the four pollutants using the ANN (predicted vs observed).  
   

Conclusions 
 

In the present study, some suggestively traffic flow patterns in the city of Athens were 
presented. After that, the emission rate of four major pollutants was calculated through the 
COPERT methodology. An Artificial Neural Network was developed to calculate emissions 
rate of four major pollutants. Emissions calculation is of great importance, because of the 
direct association among them and urban air quality. ANN emission model is a valuable tool 
for environmental purposes, having the advantage that emissions prediction may be achieved, 
in an easier and faster way than COPERT methodology, with an error less than 3%. 
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