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INTRODUCTION 
Many advection schemes are described in the literature (WMO, 1979) but none of them 
possesses all properties of the exact solution of the advective equation. One of the most 
widely used schemes is developed by Bott (1989). In the Bott scheme, the change of 
concentration for one time step is calculated as difference between advective fluxes at the cell 
edges and fluxes determined by integration of proper polynomial fitting the concentrations in 
the neighboring grid points. Upper and lower limitation and normalization are applied. The 
produced scheme is conservative and positively definite with small numerical diffusion. 
These properties make the Bott scheme very attractive for further improvements and 
optimizations. The TRAP scheme (Syrakov, 1995, Syrakov and Galperin, 1997) is such a 
daughter scheme. It is built supposing that the shape of the so called “flux area” is trapezoidal 
and its value is calculated as a product of the Courant number and the concentration in the 
middle of the trapezium. Some variants of TRAP scheme are elaborated and tested, 
decreasing the order of the fitting polynomial (Syrakov, 2003). In this paper, four new 
variants of the TRAP scheme are presented. They are obtained by special determination of 
fitting polynomials and the normalization procedure is omitted. The new created schemes are 
tested and compared with mother ones using the two-dimensional rotational test of 
Smolarkiewicz (1982). 
 
DESCRIPTION OF THE BESSEL VARIANT OF THE TRAP-SCHEME (TrB) 
The one-dimensional case will be considered here. The one-dimensional advection equation 
in non-divergent and discrete form is 

∂C/∂t-∂uC/∂x=0, Ci
n+1= Ci

n-(Fri-Fli)n  (1) 

where C(x,t) is the concentration of the tracer, u(x,t) – the transport velocity, x, t – space and 
time, Fri and Fli – the rightmost and leftmost fluxes at the edges of the ith cell. The problem 

made dimensionless by introdu-
cing the Courant number Ui

n = 
ui

nΔt/Δx and setting Δx=Δt=1. 

 
According to the TRAP 
concept, the flux area is 
approximated by rectangular 
trapezium laying on its height 
(Fig.1) and its value Ari can be 
calculated as a product of this 
height (i.e. the Courant number) 
and the half-sum of both bases. 
Estimates for these concentra-
tions can be obtained using the 

proper approximating polynomial. In TRAP, a single estimate for the point in the middle of 
the passed distance (the trapezium height) is obtained exploiting the same polynomial, 
instead. According to Fig.1, this distance is  r = (1- Ui+1/2)/2  and is the same in both cases of 

ri+1

Ui+1/2 Ui+1/2

ui+1/2>0 ui+1/2<0
Flux area

Concentration curve: 
Fitted by a polynomial 

Fig.1; Flux trough the right edge of cell i at positive and 
negative transport velocity 
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positive and negative transport velocity. It is obvious that this approach substantially reduces 
the amount of calculations. 
 
Bott (1989) recommends a 4th order Lagrangean polynomial as best fit of concentration 
profile. In the TrB-variant of the TRAP scheme (Syrakov and Galperin, 1997) a Bessel type 
polynomial of 3rd order is applied, instead: 

3
3

2
210)( rbrbrbbrCb +++= , (2) 

In order to determine the coefficients bk a local coordinate system (4-point pattern) is 
introduced with origin in point i as shown in Scheme 1. Known the grid values of the 
concentration, a system of four ordinary algebraic equations results: 
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Its solution gives the polynomial coefficients: 
 

This local approach of polynomial fitting 
(separate coefficients for each cell) leads to a 
small numerical diffusion, but in case of strong 
gradients in the concentration field some values 
of the polynomial can become negative or 
unrealistically high. That is why the next step is 

to introduce lower and upper limits for the flux area (Bott, 1989). 
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Bott introduces an additional procedure, called here normalization, aiming to account for the 
fact that the polynomial is built over grid values at grid points. Flux area is multiplied by  

Ci/Ai when 021 >+iU  and Ci+1/Ai+1 when 021 <+iU ,  (6) 

where CiΔx=Ci is the entire mass in the cell and here Ai is estimate via equations (2) and (4): 
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 (7) 

Finally, the change of concentration in the cell is determined after equation (1) having Fli = 
Fri-1. At each time step, the procedure recurs for each consecutive cell. 
 
The introduction of Bessel polynomial leads to some important results. Firstly, the lower 
order leads to a smaller number of coefficients, so the computation is faster. Secondly, the 
number of the boundary points decreases. Finally, the highest order of accuracy of the Bessel 
polynomial is in the region 0.25≤r≤0.75, i.e. around the cell edge, where the flux is located. 
The results from the experiments made with the Bott’s scheme and some variants of TRAP 
scheme are presented in Syrakov (2003) and show that the schemes possess practically equal 
simulation abilities, but TRAP schemes are much faster. As a final conclusion the Bessel 
variant of TRAP scheme (TrB) was recommended for practical use. 
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SECOND ORDER TRAP-SCHEME (Tr2) 
It was shown in Syrakov (2003) that the decrease of the order of approximation from 4 to 3 
leads to acceleration of computations without considerable change for the worse. Further 
decrease of this order is worth to be checked: The interpolation polynomial has the form: 

C2(x)=d0+d1x+d2x2 (8) 

The 3-point grid pattern has its origin in point i+1/2 
(shifted pattern), its position depending on the transport 
direction as shown in Scheme 2. Following the 
approach of the equation (3), the polynomial 
coefficients are:  
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(9) 

 

Because of the shifted pattern, the flux area is calculated 
by multiplying the Courant number with the value of the argument in equation (8) 

22/11+−= Uri . Bott's limiters and normalization procedure, equations (5) and (6), are 
applied, mass-in-cell determined as 
 

Ai=d0-d1/2+d2/3  at Ui+1/2>0  and Ai+1=d0+d1/2+d2/3  at Ui+1/2<0 (10) 
 
SELF-NORMALIZING TRAP SCHEMES (Tr3_n1, Tr3_n2, Tr2_n1, Tr2_n2) 
Further optimization of the TRAP scheme can be achieved applying the so called self-
normalizing proposed by Galperin (1998). Keeping in mind that Ci, Ci±1 etc. are the average 
concentrations in the respective cells, the coefficients of polynomials are determined in such 
way that the integral of the polynomial, taken between cell edges, is equal to the mass in it. 
As a result, the necessity of normalization step fells out.  
 
Two self-normalizing schemes can be built as variants of the schemes described above, 
exploiting normal and shifted patterns. Here, the first 3rd order scheme, Tr3_n1, will be 
described in details. The parameters of the other three schemes will be given in a table. 
 

The same 4-point 
pattern as shown in 
Scheme 1 is used. 
According to Galperin’s 
approach, the system of 
linear equations (11) is 
derived. Its solution 
gives the unknown 
coefficients of the 
polynomial (2): 
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The rightmost flux is calculated 
exploiting ri = (1 - Ui+1/2)/2; the Bott 
limiters (equation (5)) are applied, 
normalization omitted. Finally, the new 
time level concentration is calculated 
after equation (1). 

 

Table 4. Polynomial coefficients and arguments for the other three schemes  
Scheme pattern Polynomial coefficients ri – argument 
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NUMERICAL EXPERIMENTS 
The described variants of TRAP scheme have passed the two-dimensional rotational test 
(Smolarkiewicz, 1982). Instantaneous releases with cone-shaped initial profile are rotated over 
a grid field of 101×101 points with Δx=Δy=1. The wind rotates with a constant angular 
velocity ω≈0.1 (~600 time steps per rotation) centered at point (51, 51). Keeping in mind that 
the initial concentration field C0

ij is the exact solution of the advection equation after one or 
several full rotations, the following criteria for estimation of the simulation quality are 
established:  
 

Table 2. Estimates for simulation quality of numerical advection schemes (rotational test) 
Estimate Meaning 
Cmax = max( Cij )/max( Cij

o ) Cmax<1 – presence of numerical diffusion 

Cmin = min( Cij )/max( Cij
o ) Cmin<0  absence of positive definiteness 

CM = ( ) /o o
ij ij ij

ij ij ij
C C C−∑ ∑ ∑  CM - normalized difference of masses. 
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DXc and DYc estimate the displacement of the mass centre 
due to numerical effects. DXc = DYc = 0 after a full 
rotations indicate ideal transport ability  

T = ΔTcalculation/ΔTref, Relative speed of performance, ΔTref=ΔTTrB 
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Table 3. Values of the simulation quality estimates after six rotations. 
Persents (%) TrB Tr3_n1 Tr3_n2 Tr2 Tr2_n1 Tr2_n2 

Cmax 85.9 89.1 89.1 81.3 80.8 80.8 
Cmin 0.0 0.0 0.0 0.0 0.0 0.0 
CM -0.8 -0.2 -0.2 -1.2 -0.8 -0.8 
DXc -0.16 -0.16 -0.16 -0.15 -0.15 -0.15 
DYc 0.52 0.52 0.52 0.52 0.52 0.52 C

on
e 

sh
ap

e 
 

(6
 r

ot
at

io
ns

) 

T 100 43.4 41.5 48.2 35.1 34.6 
 

In Table 3, the cone-source values of these static estimates are presented. Experiments with 
other initial shapes – Gaussian, point, cylinder, cube etc. are made as well. None of these 
schemes rotates the point source (absolute discontinuity) well. All schemes give their best 
results on the gauss shape (absolute smoothness) and more or less good ones on the cone 
shape (intermediate case). One can see that the two 3rd degree self-normalizing schemes 
(Tr3_n1 and Tr3_n2) perform the rotations best, considering all criteria. They are rather fast 
and their conservation of mass characteristics are very satisfying, but they are not very good 
in rotating sharp gradients. The self-normalizing schemes of 2nd degree are very fast and 
describe well the rotation of shapes with discontinuity.  
 
All these schemes have successfully passed the deformational test of Smolarkiewicz (1982), 
as well. They are modified to be able to work on non-homogeneous grid (Syrakov, 2003). 
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