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INTRODUCTION 
Dispersion in low wind speed (LWS) conditions is mostly governed by meandering (low 
frequency horizontal wind oscillations). Even when the stability reduces the vertical 
dispersion, meandering disperses the plume over rather wide angular sectors. Thus, the 
resulting ground level concentration is generally much lower than that predicted by standard 
Gaussian plume models.  
 
Very recently (Anfossi et al., 2005; Oettl et al.., 2005) by studying the low wind speed 
turbulence and dispersion characteristics, found that: the autocorrelation functions (AF) of the 
horizontal wind components shows an oscillating behavior with the presence of large negative 
lobes due to the meandering. The following relationship,  
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proposed, respectively, by to Frenkiel (1953) and Murgatroyd (1969) in a different context, 
containing two parameters: one (p or T3) associated to the classical integral time scale and the 
second (q or m) to the meandering characteristic, very well fitted the observed AF, R(τ). 
 
Besides providing a physical explanation of the meandering occurrence, they also proposed 
the following system of two coupled Langevin equations (SCLE) for the horizontal wind 
fluctuation components describing the LWS ( 15.1 −< msu )dispersion in homogeneous 
conditions: 

( ) updtdtqvpudu ξσ 2++−=   (2a) 
( ) vpdtdtpvqudv ξσ 2++−−=   (2b) 

where u and v are the horizontal components of the wind velocity, uξ  and vξ  are random 
Gaussian variates having zero mean and unit variance, vu σσσ ==  is the standard deviation of 
the horizontal wind components assumed equal in LWS (Anfossi et al., 2005; Oettl et al.., 
2005). 
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In this paper, we propose a new SCLE for the more general case of inhomogeneous 
turbulence and for the total velocity. We also propose a new SCLE for the windy situations 
( 15.1 −> msu ). Both SCLEs are based on the so-called “Thomson simplest solution” 
(Thomson, 1987; Rodean, 1996). This last will be presented in the next Section, whereas our 
new solutions will be introduced in the following Section. In the last Section we will show 
that all these solutions (windy and low wind cases) satisfy the "well-mixed condition. 
 
NEW SCLE FOR WINDY CONDITIONS ( 15.1 −> msu ) 
We start from the well-known “simplest solution” of the 3D Langevin equations for 
inhomogeneous Gaussian turbulence proposed by Thomson (1987) 
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in which x is the position of each particle, iu  and iu their Lagrangian velocity (total and 
average, respectively), ε is the dissipation rate of turbulent kinetic energy, C0 is a 
numerical constant and ljΓ  is the inverse of the Reynolds stress tensor ijτ . Assuming 
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equations: 
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In 2-D equations (4) become: 
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In this work we will limit our considerations to the horizontal 2D model because the systems 
proposed for LWS (equations 2 and 6) apply to the two horizontal components only. 
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NEW SCLE FOR WINDY CONDITIONS ( 15.1 −< msu ) 
The equations for LWS corresponding to equations (5) are: 
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It is easy to verify that equations (6), by setting m = 0 (from which LTp 1= ) collapse on 

equations (5) and, by setting 0=
∂
∂

=
∂
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yx
 and ,0,0 == vu  collapse on equations (2). 

 
WELL MIXED CONDITION VERIFICATION 
Finally we verified that the two equation systems (5 and 6) satisfy the well mixed condition. 
To do this, a simulation series were performed. A domain of 500 x 200 m2 was considered. 
Periodic boundary conditions were used. The values of ( )yxu , , ( )yxv ,  and ( )yx,σ  were 
prescribed according to the following expressions: 
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where the numerical values of the coefficients are shown in Table 1. 
 
 
Table 13. Coefficients of equations (7) 
A 
( )1−ms  

B 
( )1−ms  

C D 
( )1−ms  

E 
( )1−ms  

L 
( )m  

0.2 0.7 0.4 0.4 0.2 100 
 
 
It is easy to verify that equations (7a and 7b) give a non-divergent wind field. The 
Lagrangian time scale ( )LvLu TT = was set equal to 150 s for the windy case, while p and q 
were computed according to the following empirical relationships (estimated from a fit to 
the Graz data set): 
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150,000 particles were released uniformly distributed in the domain, then they were moved 
for 4,000 iterations ( sdt 5.0= ) by means of the two equation systems (5 and 6) and, at the 
end, the final particle distributions were verified to be well mixed. 
 
Figures 1, 2 and 3 represent, as an example, the initial (Figure 1) and final particle 
distributions, versus x and y, of the well mixed condition verification of equations 6 
(Figure 2) and of equation 5 (Figure 3). The computation domain was divided in 24 layers 
(either along x or along y), the number of particles in each layer was computed and then 
divided by the expected well mixed value. A perfectly well mixed model should give 1 at  
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Fig. 1 – Initial distribution 

 
 
 

 
Fig.2 – final distribution (LWS –eq. 6) 

 
 
 

 
Fig.3 – final distribution (windy – eq. 5) 
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each level. The three vertical lines correspond to a perfectly well mixed model (1.0) and to an 
error of ± 5%. It can be clearly seen that the agreement is very good. All the other well mixed 
condition verification gave similarly good results. 
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