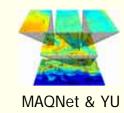

Application of GEM-AQ model to long-term Air Quality Simulation Over Europe Contribution to Eurodelta Projects

Joanna Struzewska¹, Jacek W. Kaminski²

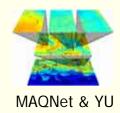
¹⁾Institute of Environmental Engineering Systems, Warsaw University of Technology, Nowowiejska 20, 00-653 Warsaw, Poland


²⁾Department of Earth and Space Science and Engineering, York University, 4700 Keele Street, Toronto, Ontario, Canada, M3P 1J3

Multiscale Air Quality Modelling Network (www.magnet.ca)

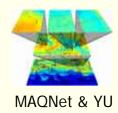
Outline

- Harmonisation and intercomparison of advanced "on-line" numerical models
- GEM-AQ modelling system description
- Experiment setup
- Results
- Conclusions



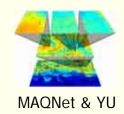
"Harmonisation"

- For simple models:
 - model formulation (similar assumptions)
 - treatment of the atmospheric processes (similar parameterisations)
- For advanced numerical models, with complex physics and chemistry - very difficult issue
 - large domain to get area of influence
 - meteorological data
 - harmonised emissions
 - initial and boundary conditions



"Intercomparison"

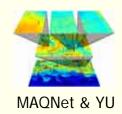
- Model evaluation comparison with measurements:
 - high resolution simulation
 - comparison with hourly measurements (not statistics)
 - station type (urban, suburban, rural)
- Model intercomparison:
 - difficult to interpret even if the same emission data are used
 - the intercomparison method
 - impossible without measurements



On-line modelling - purpose

- Reproduce the variability of atmospheric constituents with possibly good accuracy for episodic and not-episodic situation
 - maximum and minimum values, diurnal cycle
- Understanding dependence of chemical processes on meteorological situation
 - stable warm high, frontal passages, breeze regime

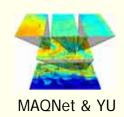
On-line modelling


Strength

- detailed connection between chemistry and meteorology
- no need to store and interpolate the meteorological data
- meteorological parameters available for chemistry every time-step

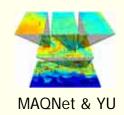
Limitations

- computationally expensive
- meteorology must be recalculated in EACH simulation
- necessary to analyse ALSO meteorological output

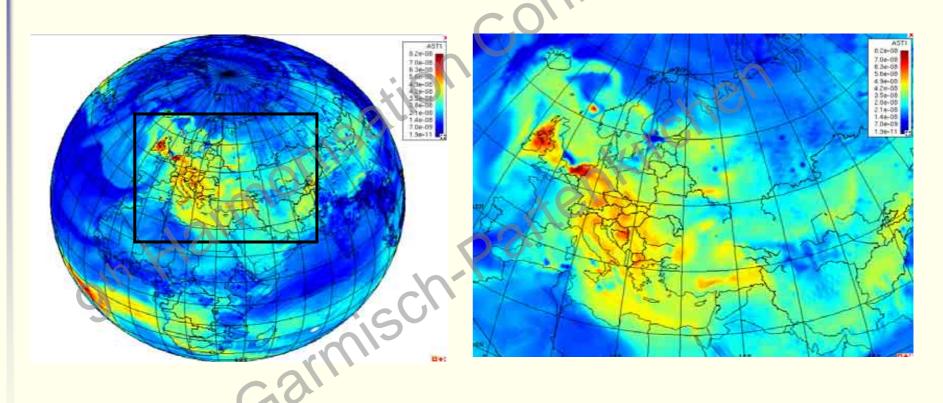


On-line modelling

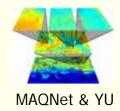
- © detailed connection between chemistry and meteorology:
 - studying atmospheric processes connected with air quality
 - "chemical weather" operational forecast
- due to the computational requirements inefficient for:
 - long-term emission scenarios
 - "regulatory" purposes


Air Quality modelling over Europe

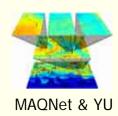
 The (questionable) quality of initial and boundary conditions for regional and local scale runs


Issues:

- how important is transport over North Atlantic for background ozone concentrations?
- influence of precursors transported in plumes during long-range transport events



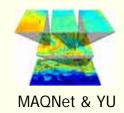
Air Quality modelling over Europe


MULTISCALE AIR QUALITY MODELLING SYSTEM GEM-AQ / MC2-AQ

Joint project between

- Institute of Environmental Engineering Systems
 Warsaw University of Technology
- York University, Toronto, Canada
 Department of Earth and Space Science and Engineering
 Multiscale Air Quality Modelling Network (www.maqnet.ca)

(sponsored by the Canadian Foundation for Climate and Atmospheric Sciences www.cfcas.org)

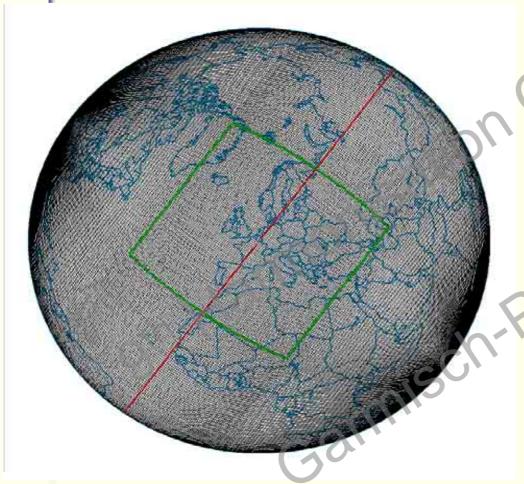


GEM – Host Meteorological Model

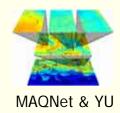
- Global Environmental Multiscale model (Côté at al. 1998)
 - Operational execution on 0.9°x0.9° global grid
 - 3D-VAR continuous objective analysis (Gauthier et al.)
 - 5 and 10 day weather forecasts global
 - 48 hour regional forecast over North America
 - Vertical resolution 28 hybrid levels
 - Top at 10 mb... research version up to 0.1 mb
 - Coupled with full physics



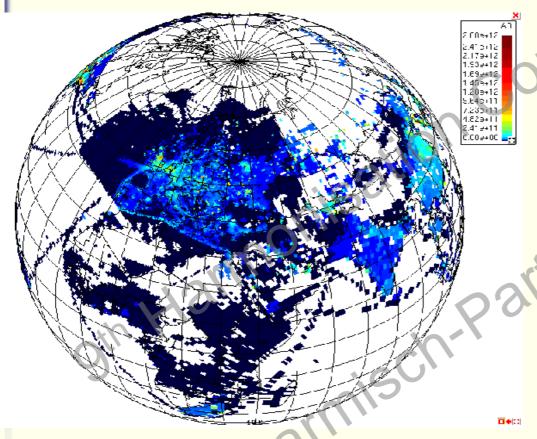
Air Quality Module


- Gas phase chemistry
- Biogenic emissions
- Aerosol chemistry and physics
 Dry and wet removal

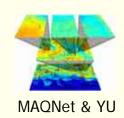
 - Wet chemistry



Model grid definition

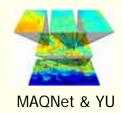


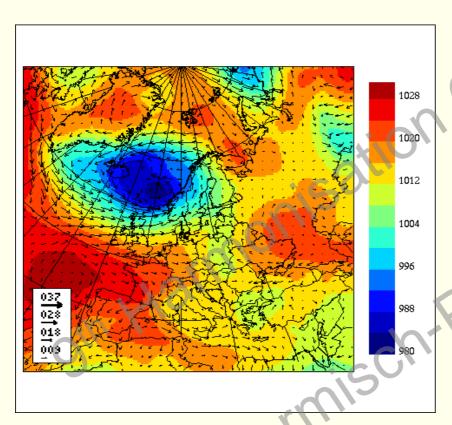
- global variable grid
 - 320x190 grid points
 - 0.5 deg resolution over Europe (100 x 100 grid points)
- hybrid vertical levels
 - model top 10 mb
 - 28 levels

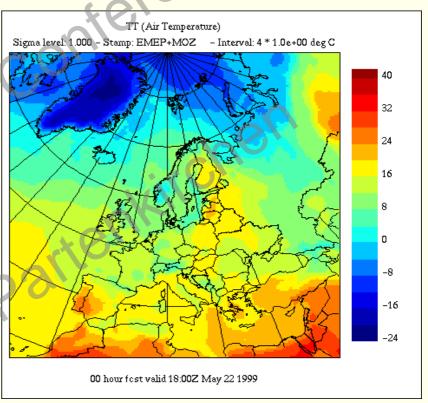


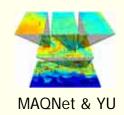
Emission data

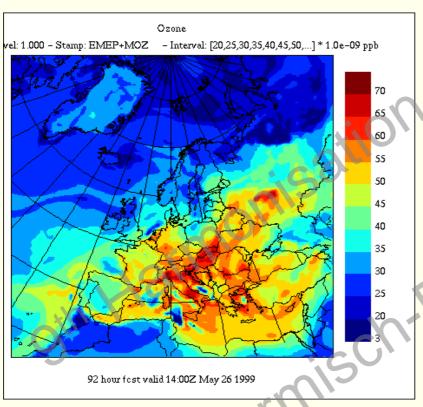
- EMEP emission inventory combined with EDGAR/GEIA global inventory
- Time variation: within EMEP area time factors provided in CityDelta project applied

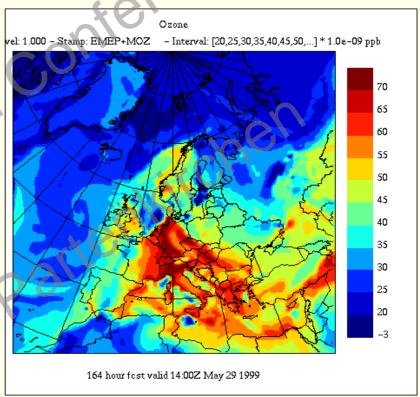


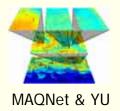

Modelling strategy

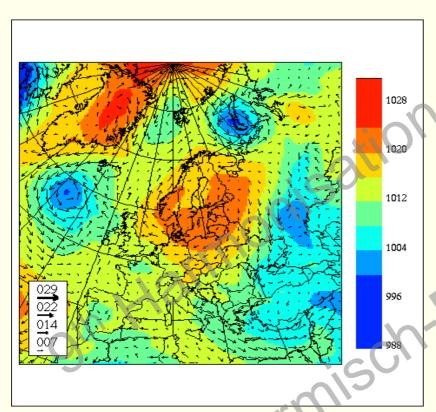

- GEM-AQ simulation (global model)
 - CMC OA every 24 hours
 - variable grid centered over Europe
 - global CTM 3D fields for chemical IC
- Tree 5-day case studies (1999)
 - 25 -29 of May
 - 1 5 of August
 - 8 12 of September
- 2-day spin up for each simulation

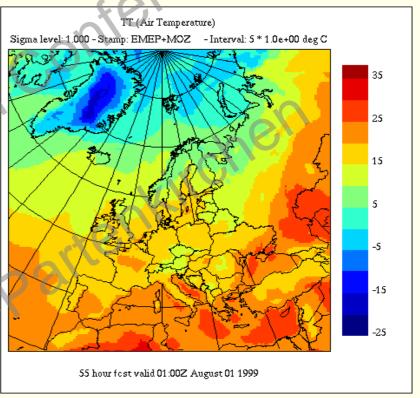

Meteorology - 25 of May 1999

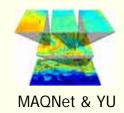


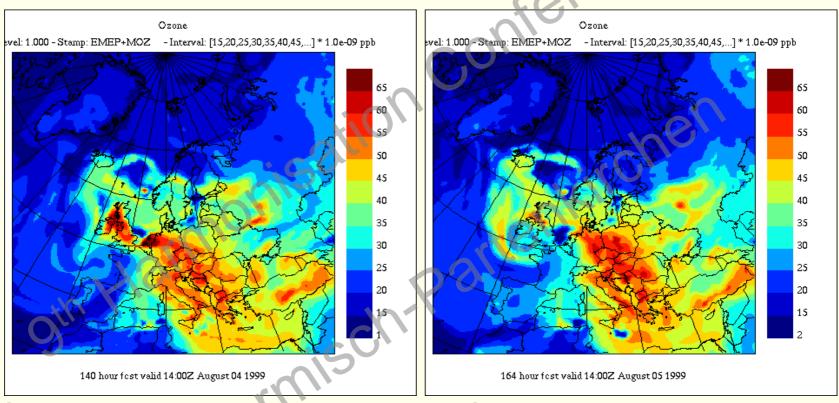

Pressure, wind and temperature field


Ozone episode: 25 - 29 of May

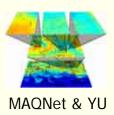



Ozone field (ppb), 14 UTC 26 & 29 of May

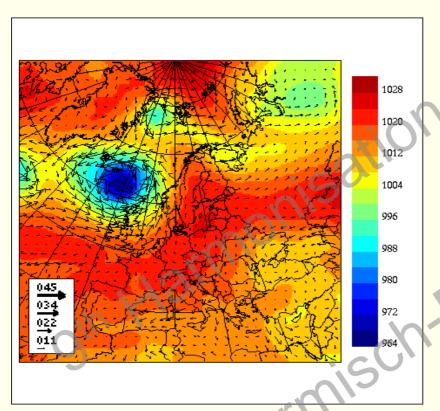

Meteorology - 1 of August 1999

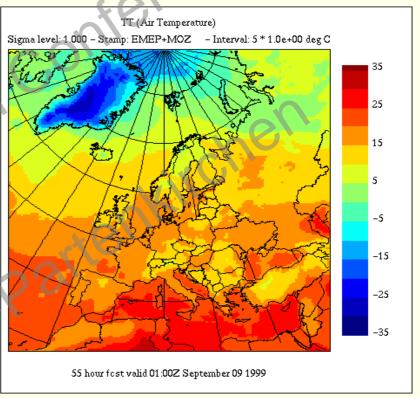


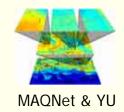
Pressure, wind and temperature field

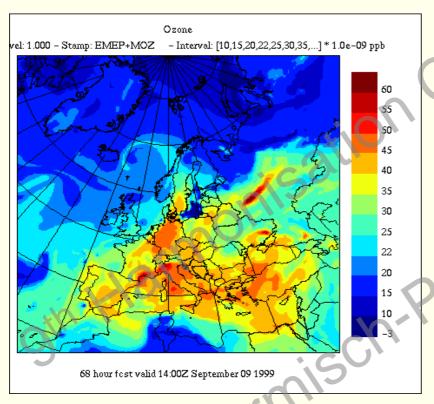


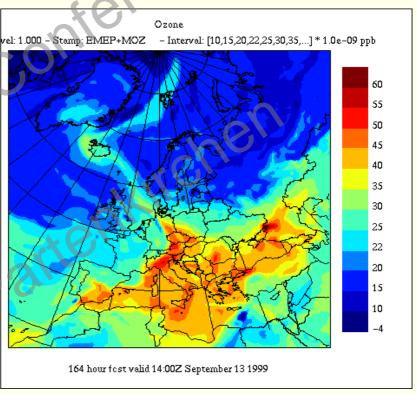
Ozone episode: 1 - 5 of August

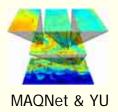


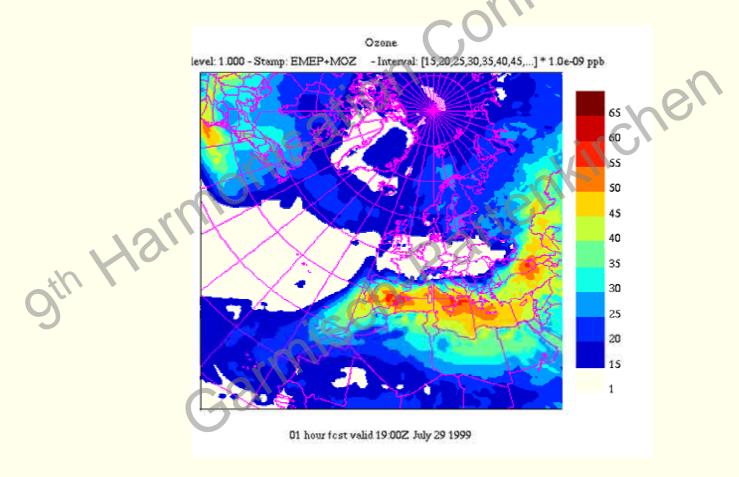

Ozone field (ppb), 14 UTC 4 & 5 of August


Meteorology - 8 of September 1999

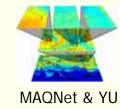



Pressure, wind and temperature field

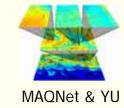

Ozone episode: 8 -12 September



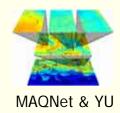
Ozone field (ppb), 14 UTC 9 & 13 of September



Ozone transport over Atlantic August case study - surface

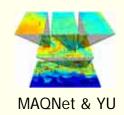


Ozone transport over Atlantic August case study - 3000 m



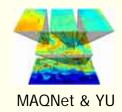
Conclusions

- On-line model: studying and understanding linkage between chemistry and meteorology
- Global model:long range transport over Atlantic Ocean - detection of polluted plums coming from North America
- Reproducing with reasonable accuracy the chemical constituents variability (connected with both local production and long range transport)



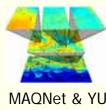
Conclusions

- "Chemical weather" over Europe is connected with meteorological situation
- Transport over Atlantic Ocean and over North Sea is driven by frontal systems associated with low pressure development
- Use of an on-line chemical weather forecast system allows for detailed analysis of transport and transformation of chemical species in the atmosphere



Conclusions

- Towards data assimilation:
 - Assimilation of CO from MOPITT
 - Assimilation of tropospheric ozone from
 - GOME
 - Surface networks
 - Assimilation of aerosols
 - AVHRR, MODIS (optical depth)
 - CALIPSO lidar backscatter
 - AERONET and AEROCAN networks



Future work

- Establishing the influence of precursors transported in air masses on air quality over Europe
 - MC2-AQ simulation over Europe
 - EMEP grid definition
 - EMEP emission fields
 - Chemical boundary conditions:
 - from GEM-AQ simulation
 - "clean air mass" very low concentration of chemical species

