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Abstract: After removing the bias from each model, different ensemble techniques were applied and compared. Besides the median (MED), 
several weighted ensemble approaches were tested and intercompared: static (SLR) and dynamic (DLR) multiple linear regressions (using 
less-square optimization method) and the Bayesian Model Averaging (BMA) methodology. The goal of the comparison is to estimate to 
what extent the ensemble analysis is an improvement with respect to the single model unbiased results. The obtained results revealed that no 
one of the 4 tested ensembles clearly outperforms the others on the basis of statistical parameters and probabilistic analysis (reliability and 
resolution properties). Nevertheless, statistical results have shown that the application of the weights slightly improves ensemble 
performance when compared to those obtained from the median ensemble. The same statistical analysis, together with the probabilistic 
measures, demonstrates that the SLR and BMA methods are the best performers among the assessed methodologies. 
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INTRODUCTION 
Although widely used in operational weather prediction (e.g. Stensrud and Yussouf, 2003), ensemble forecasting of air 
quality has only begun to be investigated in recent years, mainly focusing on ozone (O3) (e.g. Delle Monache et al., 2006a,b; 
Djalalaova et al., 2010). As shown by several authors for specific verification periods and for air quality purposes, the 
ensemble average or median of several independent simulations is usually closer to observations than a single simulation 
(e.g. Galmarini et al., 2004a,b; McKeen et al., 2005; Wilczak et al., 2006). Nevertheless, an ensemble can only give 
significant improvements if participating models have complementary strengths and weaknesses. This is difficult to estimate 
a priori and makes the use of large ensembles of models the current trend. However Potempski and Galmarini (2009) argued 
against the efficacy of this practice which may lead to a multiplication of overlapping model contributions to the process 
description, thus not leading to a real improvement of the ensemble result. Recent studies (e.g. Djalalova et al., 2010) 
examined the benefit of correcting the modelling results using the biases calculated by different ways. The objective is that 
the ensemble represents a more correct collective model perspective in which bias result from a collective misrepresentation 
of the system. For this purpose we have used five different regional air quality models that were applied over mainland 
Portugal at 5x5 km2 spatial resolution, for July 2006, and their results were bias corrected. These models include (1) the 
Comprehensive Atmospheric Model with extensions (CAMx) (ENVIRON, 2008); (2) the CHIMERE model (Schmidt et al., 
2001); (3) the European Air Pollution and Dispersion – Inverse Model (EURAD-IM) (Elbern et al., 2007); (4) the LOTOS-
EUROS (Schaap et al., 2008) and (5) The Air Pollution Model (TAPM) (Hurley et al., 2005). These models were applied 
using different meteorological drivers, parameterizations, boundary conditions and also chemical mechanisms, but the same 
pollutant emissions inventory. The analysis focused not only on O3, as the referred studies, but also on PM, both critical 
pollutants in terms of the limit values exceedances.  
 
THE MODELLING APPROACH 
The selected models include CAMx, CHIMERE, EURAD-IM, LOTOS-EUROS and TAPM. All models are regional-scale 
models designed for short-term and long-term simulations of oxidants and aerosol formation, and have been applied over 
Portugal for several times and purposes. The models have different degrees of complexity. EURAD-IM and TAPM describe 
the whole tropospheric column with several vertical layers, while CHIMERE and LOTOS-EUROS describe only the lower 
troposphere, up to above the boundary layer. LOTOS-EUROS has varying vertical layers, which follow the boundary layer 
diurnal evolution. CAMx vertical resolution is based and depends on the MM5 vertical layers structure. Boundary conditions 
are either based on observations (LOTOS-EUROS), model simulations (CAMx, CHIMERE, TAPM) or both (EURAD-IM). 
Driving meteorology is taken directly from the MM5 (Dudhia, 1993) meteorological model for CAMx, CHIMERE and 
EURAD-IM or from an optimal interpolation analysis based on observations for LOTOS-EUROS and TAPM. A summary of 
the modelling systems key features and additional descriptions can be consulted on the online Model Documentation System 
(http://pandora.meng.auth.gr/mds/mds.php). Any multi-model ensemble approach relies on model ‘diversity’ or in other 
words on the fact that different models produce with more or less emphasis specific and different aspects of the physical 
process they want to model (Potempski and Galmarini, 2009). We therefore used the five models in their original set up in 
terms of input data, numerical grid resolution, parameterizations and boundary conditions hoping with this to create an 
intrinsic diversity in the model results, though without having any a priori evidence of that. The anthropogenic emissions are 
defined on a common basis, using the national emission inventory (INERPA) spatially disaggregated (Monteiro et al., 2007) 
and the same horizontal resolution (5x5 km2). O3 and PM observed data were collected at the Portuguese air quality 
monitoring network, with a total of 22 background stations (www.qualar.org).  
 
 
THE ENSEMBLE APPROACHES 
Median ensemble (MED) 
The median approach was selected since the distribution of the models results is unknown a-priori, and also based on 
Monteiro et al. (2011) results that confirmed the superior skill of the median ensemble comparing to the mean value. By 
definition, the median is less sensitive to extreme scores and it is a better measure for highly skewed distributions. The MED 

http://pandora.meng.auth.gr/mds/mds.php
http://www.qualar.org/


14th Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes – 2-6 October 2011, Kos, Greece 
 
 

Topic 1: Model Evaluation and Quality Assurance 23 
 

ensemble thus filters extreme results and when performed at each point in space and time, reduces the deterministic character 
of the single realization (Galmarini et al., 2004). Given the present population of the models results, the use of the mean 
value lead to a large overestimation of the concentration levels and resulted less appropriate (Monteiro et al., 2011). An 
argument that can be raised against the use of the MED ensemble may relate to the fact that all models are equally weighted 
and the selection of the model that defines the ensemble, based on the ensemble distribution, can be erroneous.  
 
Static linear regression (SLR) 
A different approach to derive an ensemble (in opposition to the equally weighted median ensemble) is to use linear 
regression techniques to find weight coefficients for the models such that the sum of the weighted models has a minimum 
bias. Linear regression method has been previously used by Krishnamurti et al. (1999) to improve precipitation forecasts 
using a so-called superensemble which included four diverse global weather forecasting models, and after was applied for air 
quality modelling purposes (e.g. Pagowski et al., 2005; Djalalova et al., 2010). A system of equations is formulated as a 
linear combination of the simulations of ensemble members multiplied by unknown weights to be equal to the measured 
pollutant concentration, as shown in equation (1): 
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where I is the total number of observations, J the number of ensemble members, mij are ensemble member simulations, wj the 
unknown weights, and oi the observations. In the current case I is 744 (24x31), and J = 5. Since I > J the above system is 
over-determined and a solution to a least-square problem have to be sought. In the current approach the models weight will 
be estimated for each single station and not applied/assumed the same for the entire modelling domain. To calculate weights 
we use a technique based on the minimization of error (defined as the difference between ensemble values and measurements 
in the least-square sense), which allows to find the least-square solution even when severe degeneracies in matrix M occur. 
Matlab software with adequate libraries was used to apply this technique. In order to evaluate whether the simulation period 
(July month) would be sufficient to test this ensemble technique, we vary the length of the training period to determine the 
weights for the ensemble members from 1 to 31 days. For a specific training period, weights are calculated by solving the 
equation (1) written for all the events during this period. Since the model results come from a previous bias-correction 
technique application (Monteiro et al., 2011), only the last 26 days are available for this purpose. The dependence of the 
models weight averaged over this 26-day evaluation period on different lengths of the training period is shown in Figure 1. 
 

 
 Figure 1. Relationship between the training period and the models average weight, for O3 (black) and PM10 (grey). 

 
The variability of weights decreases with the length of the training period. It is clear that a long training period would result 
in weights more appropriate for a long-term mean, while the weights calculated based on recent several days would be more 
responsive to the daily variability of the pollutants concentrations. It can be seen that the magnitude of weights vary 
significantly during the first 10 days and change little after 15 days of training. This is in agreement with other previous 
studies (e.g. Pagowski et al., 2005) and proves that the availability of data for only a single month is sufficient and allows 
testing this ensemble approach. Nevertheless, for the present exercise, we choose to use the total number of days (26 days). 
 
Dynamic linear regression (DLR) 
In contrast to static linear models, which assume that model performance does not change in time, dynamic linear models 
allow for temporal evolution of the characteristics of these processes. Following Pagowski et al. (2006), the dynamic linear 
model is calculated, similar to the SLR, using the hourly model and observed ozone values: 

Mi1*w1 + Mi2*w2 +…+ Mi5*w5 = Oi      (2) 
where Mi1,., Mi5 and Oi are the values of the 5 models and the observation for a single monitoring site; and w1,., w5 are the 
respective unknown weight coefficients. But in this case, in opposition to the SLR approach, a training period is moving in 
time and is similar to the dynamic bias-correction approach applied in Monteiro et al. (2011). Different length of training 
periods was tested in order to identify better performance. Similarly to the bias-correction exercise, a 4 and 7 days period 
(related to synoptic patterns lifetime) were evaluated, together with 1 day period. The over-determined matrix system is also 
solved using a least-squares minimization procedure which provides the optimal coefficients (w1,., w5). This procedure is 
repeated for all days in the considered time period. In Figure 2, the different training periods are compared using standard 
statistics to assess the ensemble performance, considering the average over all the monitoring sites. 
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   Figure 2. Validation of the DLR ensemble technique for different training periods (considering the averaged statistics 

BIAS, RMSE and correlation factor over all the monitoring stations). 
 
The results show that there are no significant differences between the three different training periods, all presenting small 
errors (BIAS < ± 2 µg.m-3 and RMSE < 25 µg.m-3) and high correlation measures (r>0.6), for both pollutants. The 7 days 
training period has the best overall performance, taking into account the three different averaged statistics and both 
pollutants. This training period was also selected because requires data only from the 7 previous days, and therefore this 
technique may still be easily applied to an operational forecast. The model weights were calculated for each observation site, 
allowing spatial variability of weights to be obtained. Since some of the tested ensemble methods require model weights 
averaged in space, this DLR7 technique will be applied using the time dependent weights only (the same set of wi 
coefficients are used for all sites). Figure 3 compares the ensemble errors for these two approaches (function of time and 
space, as in Figure 3, and function of time only). As already expected, the DLR ensemble performance reduces when model 
weights are averaged in space and only vary in time. Nevertheless, there are no substantial disparities, and some exceptions 
are also observed. 
 

 
Figure 3. RMSE of the DLR7 ensemble using model weights as a function of time and space (black bars) and averaged in space (white bars). 
 
Bayesian Model Averaging (BMA) 
The BMA methodology (Riccio et al., 2007) is a statistical procedure that creates the optimal combination of the results 
obtained from different models by weighting individual model simulations on the basis of probabilistic measures. The 
weights are assigned so that the models that better predict the concentration values in a portion of the modelling domain and 
at a specific instant in time get the highest values and, therefore, have a great contribution to the definition of the average. 
More specifically, the BMA scheme describes the posterior probability density function (pdf) as a weighted average of 
probability distributions of individual models. The BMA technique was already applied in different contexts and presented in 
several publications (e.g. Riccio et al., 2007). The pdf of the BMA approach is given by (3) 
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where wk is the posterior probability of the model Mk being the best forecast in the ensemble, andpkis the posterior 
probability  that x occurs for a given model prediction Mk and measurement data O. The comparison of probability 
distributions of the modelling results against the observations (not shown) shows that all the models have similar 
performance for O3 and the distributions of modelling results and measurements are linearly related. More complex 
behaviour is demonstrated for PM10. A difficulty of the models to correctly predict high concentrations is an important factor 
considered in BMA approach to attribute reliability, and therefore the weights, for each model. The skill levels of the 
ensembles are analysed using different approaches. This intercomparison was carried out using the analysis of the averaged 
time series (Figure 4) and classical statistical indicators (Borrego et al., 2008) (Taylor diagram; Figure 5). Appropriate 
probabilistic measures for ensemble evaluation, like Talagrand diagrams, are also presented (Figure 6). Figure 5 depicts the 
time series of observations and each ensemble results, averaged over all the monitoring sites, for each pollutant and during 
the simulation period. 
 

 

 
Figure 4. Hourly time series averaged over all monitoring stations, for observed and each ensemble, for O3 and PM10. 

0

60

120

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Time (hour)

O
3 (

µg
.m

-3
)

OBS MED
SLR DLR 7
BMA

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Time (hour)

PM
10

 (µ
g.

m
-3

)

OBS MED

SLR DLR 7

BMA



14th Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes – 2-6 October 2011, Kos, Greece 
 
 

Topic 1: Model Evaluation and Quality Assurance 25 
 

The similarity of the four ensemble techniques is highlighted by the averaged time series that shows a similar behaviour 
within the ensembles for the background and peak concentrations and for both pollutants. It should be noticed that none of 
the ensembles was able to predict the magnitude of the peaks occurred during the 12th-16th July episode days, besides an 
overall good agreement between the observations and simulated values. To represent the global skill of the models and of 
their ensemble average, Figure 6 shows, in a single diagram, the ‘‘Taylor plots’’ for all ensemble methods and for both 
pollutants. The Taylor diagram is a powerful tool that summarizes standard deviation, RMSE and R in a single point on a 
two-dimensional plot. Together, these statistics provide a quick summary of the degree of pattern correspondence among the 
simulated values and the real data. In this particular case, the diagram is particularly useful in assessing the relative merits of 
the applied ensemble techniques. The diagram will quantify how closely the ensemble resembles the observed field (OBS). In 
Figure 5 five points are plotted on a polar style graph: the OBS represents the observed data and the others represent the 
ensemble techniques. The radial distances from the origin to the points are proportional to the pattern standard deviations, 
and the azimuthal positions give the correlation coefficient between the ensemble and the OBS field. The radial lines measure 
the distance from the OBS point and indicate the RMSE. The point representing the OBS field is plotted along the abscissa. 
In this case, the OBS field has a standard deviation of 30.8 µg.m-3 and 15.9 µg.m-3 for O3 and PM10, respectively. 
 

 
(a) O3   (b) PM10 

Figure 5. Taylor diagram that summarizes the overall performance of the different ensemble techniques. 
 
From Figure 5, it should be highlighted the higher skill (correlation coefficients higher than 0.7) of the weighted ensembles in 
comparison to the median model.  Especially significant for the median model is the increase in RMSE, while the decline in 
correlation is more modest. The application of the dynamic regression based on daily model outputs does not improve the 
ensemble, namely for O3. It can be stated that, for both pollutants, SLR and BMA methods present the best overall 
performances. Comparing the poorer ensemble (the median) and the best performing ensemble (the SLR and BMA methods) 
we find a 22% improvement for RMSE and 7% for the correlation coefficient of O3. For PM10, these improvements are also 
relevant, 18% for RMSE and 11% for the correlation coefficient. To complement this ensemble intercomparison, the 
capability of each ensemble to produce valuable estimates of the observed frequency associated with different simulation 
frequencies was determined (Delle Monache et al., 2006a). This property can be verified using reliability diagrams, also 
known as rank histograms which display the frequency of occurrence as a function of predicted probability. First, the 
ensemble methods are ranked for each prediction. Then, the frequency of an event occurrence in each bin of the rank 
histogram is computed and plotted against the bins. The number of bins equals the number of members plus one. A perfectly 
reliable ensemble shows a flat Talagrand diagram, where the bins all show the same frequency. Figure 6 shows the rank 
histogram for the four applied ensemble techniques, for both pollutants. 
 

 
Figure 6. Talagrand (rank histogram) for the different ensemble techniques, and for both pollutants (O3 and PM10). 

 
The Talagrand diagram confirms the similarity of the four ensemble techniques. There is no method significantly more 
valuable than the others. Nevertheless, the SLR and BMA approaches have total areas (sum of each bin area) slightly 
superior than DLR and MED ensemble. All the histograms reveal heterogeneities in the distribution of the ensemble pollutant 
values relative to the distribution of observations, although smaller than the original models (Monteiro et al., 2011). The “U” 
shape exhibited results from an underestimation of the ensemble spread in comparison with the observations. The higher 
number of counts for the first and last bins (1 and 6), much larger than the other bins, reflect the ability of the ensembles to 
simulate low and high (peaks) levels for both pollutants. The symmetric “U” shape confirms the use of unbiased data. 
 
SUMMARY AND CONCLUSIONS 
In this study, different ensembles methods were applied to improve the estimation of surface O3 and PM10 concentrations 
over Portugal, using five different air quality models, and were evaluated/intercompared against observations from the 
monitoring surface network. Models have been run for the period of July 2006 with the same emission data input, but 
different own configuration. Four different types of ensemble were generated using the bias-corrected sets of the five model 
simulations: median ensemble (MED); static (SLR) and dynamic (DLR) liner-regression ensembles and also the BMA 
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ensemble. Results pointed out that all bias-free ensembles performed very similar and significantly better than single 
unbiased models. This similar behaviour can be explained by the use of the bias-corrected models ensemble, either evenly or 
as a weighted average. Nevertheless, statistical results show that the application of the weights slightly improves ensemble 
performance when compared to those obtained from the median ensemble. The statistical analysis together with the 
probabilistic measures (histogram diagram), constructed for the four types of ensembles, demonstrate that the SLR and BMA 
bias-corrected ensembles present the best performance. The most appealing feature of the SLR method is its effortless 
implementation giving it an advantage over BMA approach, which requires a larger data processing. The above results 
confirm the advantage of the ensemble approach for air quality assessment. In particular, it is noted that the skill 
improvements from both bias correction and ensemble techniques are greater for a variable with low forecast skill (PM10) 
than for ozone. Results can be improved if emissions data will also be perturbed, and not only the meteorology and 
chemistry, since the ensemble result will have a probability distribution function with higher verification. The ensemble 
methodology can be particularly important for forecasting purposes, for which no monitoring data can be used for the 
assessment and whenever the model results are used to support decision making or regulatory purposes.  
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