The NMMB/BSC-CTM: a multiscale online chemical weather prediction system

Oriol Jorba1, Carlos Pérez2, Karsten Haustein1, Zavisa Janjic3, Jose María Baldasano1,4, Donald Dabdub5, Alba Badia1 and Michele Spada1

1 Earth Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
2Earth Institute at Columbia University, NASA GISS, New York, USA
3NOAA/NWS/National Centers for Environmental Prediction, Camp Springs, MD, USA
4Environmental Modeling Laboratory, Technical University of Catalonia, Barcelona, Spain
5Department of Mechanical and Aerospace Engineering, University of California Irvine, USA
BSC air quality modeling activities

- CALIOPE daily experimental forecast and verification
 - Daily experimental forecasts for meteorology and air quality (12 km for Europe and 4 km for the Iberian Peninsula) (http://www.bsc.es/caliope).

- BSC-DREAM8b daily forecast and verification
 - North Africa/Mediterranean - 1/3 x 1/3 degree resolution
 - Asia domain - 1/2 x 1/2 degree resolution

NMMB/BSC project

- Memorandum of understanding NCEP – BSC on the use and development of air quality and meteorological modules within the new NMMB NWP model

- Funded by national research projects:
 - Improvement of the Dust Regional Atmospheric Model (BSC-DREAM8b) for prediction of Saharan dust events in the Mediterranean and the Canary Islands [CICYT CGL2006-11879].
 - Coupling of a fully online chemical mechanism within the atmospheric global-regional umo/dream model [CICYT CGL2008-02818].
 - Coupling of a fully online multi-component aerosol module within the atmospheric global-regional NMMB model [CICYT CGL2010-19652].

- Development under a collaborative framework with several research institutions

- Experimental research regional and global air quality modelling system
Embedding dust and chemistry processes within the meteorological core driver NMMB
Unified nonhydrostatic dynamical core (list of features is not exhaustive)

- Wide range of spatial and temporal scales (from meso to global)
- Regional and global domains (just a simple switch)
- Evolutionary approach, built on NWP experience by relaxing hydrostatic approximation
 - Favorable features of the hydrostatic formulation preserved
- The nonhydrostatic option as an add-on nonhydrostatic module
- No problems with weak stability on mesoscales
- Conservation of important properties of the continuous system
- Arakawa B grid (in contrast to the WRF-NMM E grid)
- Pressure-sigma hybrid
- Improved tracer advection: Eulerian, positive definite, mass conservative and monotonic
- NMMB regional will become the next-generation NCEP mesoscale model for operational weather forecasting in 2011
NMNB/BSC-DUST: a new online mineral dust model

- Evolution of the BSC-DREAM8b model [Nickovic et al., 2001; Pérez et al., 2006]

- NMMB introduction
 - The NCEP-ETA weather forecast model is replaced by a state-of-the-art regional/global NWP model with improved dynamics and physics:

- New NMMB/BSC-Dust model [Pérez et al., 2008, 2011; Haustein et al., 2011]
 - Implementation of all common on-line dust modules for global and regional simulations
 - Nested regional domains at very high resolution are available
 - The current DREAM dust emission scheme is upgraded to a physically based scheme → *explicitly accounting for saltation and sandblasting*
 - New high resolution database for soil textures and vegetation fraction is included
 - Dust direct radiative effect implemented
NMNB/BSC-CTM: gas-phase chemistry

- Implementing the gas-phase chemistry within NMNB/BSC-DUST model.

- Fully on-line modeling system

- NEW NMNB/BSC-CTM [Jorba et al., 2009, 2010, 2011]
 - Wide range of application from global to sub-synoptic scales.
 - Modular implementation within NMNB. Chemistry solved after NMNB physics with the same timestep.
 - The advection, horizontal and vertical diffusion solved using the NMNB numerical schemes.
 - Dust processes of NMNB/BSC-DUST included and feedback interactions allowed.
 - Several gas-phase processes implemented, such as on-line natural emissions from MEGAN model, transport, dry deposition, clouds scavenging and wet deposition.
Tropospheric gas-phase chemistry processes (Jorba et al., 2009-2011; Badia and Jorba, 2011)

Photolysis scheme
- On-line Fast-J scheme (Wild et al., 2000)
- Coupled with physics of each model layer (e.g., aerosols, clouds). Planned to couple with NMME/BSC-DUST aerosols.
- Considers NMME grid-scale clouds and NMME/BSC-CHEM O3 or climatology
- 7 bins wave-length (quick version)
 - $J_i = \int_{\lambda_1}^{\lambda_2} F(\lambda) \sigma_i(\lambda) \Phi_i(\lambda) d\lambda$
 - $\sigma_i(\lambda)$: absorption cross section
 - $\Phi_i(\lambda)$: quantum yield of phot. react.
- Tables of $\sigma_i(\lambda)$ and $\Phi_i(\lambda)$ to be updated from Prather Fast-JX.

Cloud chemistry
- Cloud chemistry includes: scavenging, mixing, wet deposition and aqueous chemistry
- Scavenging and wet deposition implemented for gridscale and sub-gridscale clouds following Byun and Ching (1999)
 - Sub-grid + gridscale: Scavenging:
 - $\frac{\partial m_i^{\text{old}}}{\partial t} = \frac{\partial m_i^{\text{old}}}{\partial t} + \frac{\partial m_i^{\text{old}}}{\partial t}^{\text{subgrid}}$
 - $\frac{\partial m_i^{\text{old}}}{\partial t} = m_i^{\text{old}} \left(e^{-\alpha \tau_{\text{old}}} - 1 \right)$
 - $\alpha = \frac{1}{\tau_{\text{subgrid}} \left(1 + \frac{IWF}{H_i} \right)}$
 - $\tau_{\text{subgrid}} = \frac{W_i \Delta z_{\text{old}}}{\rho_{H,i} P_i}$
 - $IWF = \frac{P_{H,O}}{W_i RT}$
 - Wet deposition:
 - $w dep_i = \int_0^{t_{\text{old}}} m_i P_i dt$

Chemical mechanism
- CBM-IV and CB05 mechanisms implemented (Gery et al., 1989; Yarwood, 2005)
- Coupled with Fast-J photolysis scheme
- Mechanism implemented through KPP kinetic preprocessor (Damian et al., 2002)
- KPP coupling allows a straightforward modification of chemistry kinetics and reactions. Suitable for sensitivity studies.
- Implemented an EBI solver for CB05

Dry deposition
- Wesely et al. (1986, 1989) implemented to compute deposition velocities
- Simple scheme coupled with surface model layer physics (e.g., skin temperature, incoming shortwave radiation, friction velocity, …)
- Solve dry deposition in chemistry module independently from vertical diffusion. Considering to solve dry deposition and vertical diffusion at first model level at same time.

$$dC_i(z_{\text{ref}})/dt = -V_d(z_{\text{ref}}) \times C_i(z_{\text{ref}})/\Delta z$$

$$V_d = (R_a + R_b + R_c)^{-1}$$
Stratospheric ozone chemistry

- Proper treatment of STE, improve the balance of tropospheric ozone and specify upper boundary condition for tropospheric ozone
- Implementation of the Cariolle and Teyssèdre (2007) linear model from the tropopause to the model top

\[
d\rho_3/dt = A_1 + A_2(r_3 - A_3) + A_4(T - A_5) + A_6(\Sigma - A_7) + A_9r_3
\]

\[A_1=(P-L): \text{Production and loss rate}\]
\[A_2=\partial(P-L)/\partial r_3\]
\[A_3=r_3: \text{ozone mixing ratio}\]
\[A_4=\partial(P-L)/\partial T\]
\[A_5=T: \text{temperature}\]
\[A_6=\partial(P-L)/\partial \Sigma\]
\[A_7=\Sigma: \text{ozone column}\]

\(A_i\) coefficients are monthly averages calculated with the MOBIDIC 2D model (Cariolle and Brard, 1984)

Results and evaluation works
Results: Dust model

- Global and regional annual simulations evaluated with:
 - Aeronet sun-photometer networks
 - LIDAR vertical profiles
- Several satellite products
 - Surface concentrations
 - Emission and deposition fluxes

Pérez et al., 2011; Haustein et al., 2011
Aerosol optical depth on an annual cycle
Aerosol optical depth near emission sources

Pérez et al., 2011 – ACPD
Results: Gas-phase chemistry

● Model setup:

→ Global domain
→ Non-hydrostatic physics
→ 1.4° x 1° horizontal resolution
→ 64 vertical (sigma-hybrid) layers
→ 1° x 1° NCEP/FNL analysis for meteorological initial conditions
→ Chemistry initial conditions from LMDz-INCA
→ Anthropogenic emissions: MOZART 2004
→ Biogenic emissions: MEGAN online model
→ No biomass burning emissions
→ Half-year spin-up
→ July – August 2004 simulation

→ All results are preliminary!
Preliminary evaluation with surface and ozonesondes

Evaluation against background surface from WDCGG, EMEP and CASTNET networks
Evaluation from 3-hourly simulations

<table>
<thead>
<tr>
<th>GAS (ppbv)</th>
<th>Source</th>
<th>Nº stns</th>
<th>Obs. Mean</th>
<th>Sim. Mean</th>
<th>MB</th>
<th>RMSE</th>
<th>MNBE (%)</th>
<th>MNGE (%)</th>
<th>MFB (%)</th>
<th>MFE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O3</td>
<td>WDCGG</td>
<td>41</td>
<td>31.69</td>
<td>27.35</td>
<td>-4.34</td>
<td>11.2</td>
<td>-7.87</td>
<td>25.49</td>
<td>-13.45</td>
<td>26.83</td>
</tr>
<tr>
<td></td>
<td>EMEP</td>
<td>70</td>
<td>38.25</td>
<td>27.25</td>
<td>-11</td>
<td>15.77</td>
<td>24.22</td>
<td>30.38</td>
<td>32.21</td>
<td>37.5</td>
</tr>
<tr>
<td></td>
<td>CASTNET</td>
<td>63</td>
<td>31.73</td>
<td>33.86</td>
<td>2.37</td>
<td>2.21</td>
<td>11.57</td>
<td>22.67</td>
<td>7.58</td>
<td>20.56</td>
</tr>
<tr>
<td>NO2</td>
<td>WDCGG</td>
<td>12</td>
<td>1.94</td>
<td>1.23</td>
<td>-0.71</td>
<td>2.04</td>
<td>29.37</td>
<td>102.26</td>
<td>-30.49</td>
<td>80.56</td>
</tr>
<tr>
<td></td>
<td>EMEP</td>
<td>21</td>
<td>3.9</td>
<td>1.8</td>
<td>-2.1</td>
<td>3.36</td>
<td>-38.85</td>
<td>56.58</td>
<td>-64.45</td>
<td>77.2</td>
</tr>
<tr>
<td>CO</td>
<td>WDCGG</td>
<td>14</td>
<td>121.51</td>
<td>145.32</td>
<td>23.82</td>
<td>51.51</td>
<td>43.28</td>
<td>50.14</td>
<td>22.06</td>
<td>29.93</td>
</tr>
</tbody>
</table>

Root Mean Square Error (ppbv) in every station (~100m) of Surface O3 (ppbv)

Root Mean Square Error (ppbv) in every station (~100m) of Surface NO2 (ppbv)

Root Mean Square Error (ppbv) in every station (~100m) of Surface CO (ppbv) - EMEP

Badia and Jorba, 2011 – EGU2011
Preliminary evaluation with surface and ozonesondes

Root Mean Square Error(ppbv) in every station (<1000m) of Surface O3 (ppbv)
Inclusion of the stratospheric O3 linear model
Stratospheric ozone

- Implementation of the Cariolle and Teyssèdre (2007) linear model
- It improve the ozone balance within the troposphere
Future developments
Future developments (I/II)

- Improvement and evaluation of the chemistry part of the model.
- Implementation of the other global relevant aerosol species, i.e. sea-salt (SS), black (BC) and organic carbon (OC), and sulfate (SO4), in addition to dust (DU).

- It is planned to couple the radiative scheme with all the considered aerosol species to simulate the direct aerosol radiative effect.
- It is planned to couple the model ozone prediction with the radiative scheme of NMMB.
- It is panned to couple the photolysis scheme with the model clouds, ozone, and aerosol species (DU, SS, BC, OC, SO4).
Future developments (II/II)

• Implementation of secondary aerosol schemes (SIA, new SOA parameterizations) for LAM applications at high-resolutions

• Evaluation of the gas-phase chemistry on regional domains

• Experimental dust forecasts on global and regional domains to replace BSC-DREAM8b forecasts
THANK YOU FOR YOUR ATTENTION

CONTACT:
oriol.jorba@bsc.es

Acknowledgments
This work was funded by grant CGL2006-11879, CGL2008/02818 and CGL2010/19652 of the Spanish Ministry of Science and Innovation.