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Introduction

 During the past 10+ years we have provided independent verification 

and validation of airborne hazard prediction models

 During this period, user needs for consequence assessment modeling 

capabilities have focused increasingly on accurate casualty predictions

 Other applications, like prediction of hazardous areas, are still important

 Simultaneously, advances in consequence assessment modeling have 

raised hopes that accurate casualty prediction is possible

 Higher spatial and temporal resolution atmospheric dispersion models, 

multiscale modeling, better population modeling, advanced toxicity models

 We recently have focused on examining whether the end-to-end 

combination of these modeling components is consistent and able to 

produce accurate, useful consequence assessments

 These components must be assessed both individually and together in a 

user-oriented context
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Obstacles to accurate casualty assessment

 Individual components of a hazard prediction model may be inaccurate

 Uncertainties in source term modeling and atmospheric dispersion 

modeling have been discussed within the community, although not always 

communicated well (quantitatively) to the user

 Uncertainties in health effects modeling and population modeling are less 

well understood within the community, and less often conveyed to the user

 For example, we recently have focused on uncertainties associated with 

the use of toxic load models for casualty assessment

 The components of a hazard prediction model may be inconsistent 

with each other for a particular application of the model

 That is, does it make sense to combine two or more modeling approaches 

for a given application?

 A consistent obstacle to combining model components is incompatibilities 

in the order in which averaging (spatial, temporal, ensemble) occurs

 For example, we recently have focused on the use of ensemble-mean 

atmospheric dispersion models in combination with toxic load models
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Introduction to casualty prediction

 The susceptibility of an individual to becoming a casualty is usually 

considered to be lognormally-distributed in the exposure (dosage)

 Probability of casualty at r is given by cumulative distribution function

 Two toxicity parameters:  μ (log(median effective dosage)) , σ (reciprocal of “probit slope”)

 For a single deterministic dosage prediction, the total casualties are 

given by the population-weighted sum over all locations r 

 ρ(r) = static population density
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Haber’s Law and Toxic Load

 Haber’s Law says that the probability of casualty depends only on the 

dosage, D(r) = C(r) T, for steady concentrations C(r) over time T

 Real-world exposures (and most dispersion model outputs) do not 

involve steady concentrations

 An unproven generalization for time-varying exposures is

 For some toxic materials, the probability of casualty is better modeled 

by replacing the dosage with the “toxic load”, TL(r) = [C(r)]n T

 Unlike Haber’s law, the ratio of concentration intensity to duration matters

 n is an extra toxicity parameter called the toxic load exponent

 One (unproven) generalization (of many) for time-varying exposures is
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The problem with ensemble averaging

 Most hazard prediction models output only the ensemble average 

over concentration realizations rather than individual realizations
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Adapted from presentation given by P. Bieringer , U.S. NCAR (22 June 2010)
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Ensemble averaging –
the dosage (Haber’s law) problem

 Relating the ensemble distribution of concentration realizations to the 

ensemble distribution of dosage realizations is not straightforward

 c(r,t) distribution = clipped-normal, gamma, etc.  →  D(r) distribution = ???

 We have demonstrated a relationship under certain conditions:

 Variance of concentration fluctuations is small compared to the mean
 Implies, via central limit theorem, that D(r) is normally-distributed

 The concentration fluctuation autocorrelation decays exponentially with t
 This permits the calculation of the variance of the normally-distributed D(r)

 Concentration fluctuations are clip-normally distributed

 Given these conditions, the distribution of dosages can be calculated 

from the ensemble mean concentration and its variance

 Most atmospheric dispersion models do not output concentration variance
 An exception is the SCIPUFF model (used in HPAC)

 If the distribution of dosages is known, the ensemble mean number of 

casualties and its variance can be calculated
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Ensemble averaging – the toxic load problem

 Relating the distribution of concentrations to the distribution of toxic 

loads is harder than it is for dosages, due to the concentration exponent

 We have not yet found a way to calculate toxic load derived casualties 

directly from low-order moments of the concentration ensemble

 Even a full moment expansion loses the spatiotemporal correlations

 Even calculating toxic load hazard areas (ensemble mean toxic load) is 

challenging – depends on the form of the toxic load model (ten Berge is OK)

 Our prior work suggests that using the ensemble average plume directly 

with toxic load models (n > 1) can underestimate casualties significantly

 Ensemble averaging smoothes out harmful concentration spikes

 The concentration exponent in toxic load models also causes problems 

in terms of time averaging (similar to problems w/ ensemble averaging)

 Introduces an undetermined “concentration pre-averaging timescale”
 Lower bound of averaging time is probably the human respiration timescale, but the 

“correct” averaging time is not known (will depend on the hazardous material)

 Some users choose averaging time from dispersion model outputs, not toxicity
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Toxic load modeling challenges –
choice of toxic load model

 As discussed in the talk by Platt et al., it is not obvious how to 

generalize the toxic load model to the case of time-varying exposures

 Several generalizations have been proposed in the literature

 None are well-supported by experimental data

 Some seem to have been suggested principally on the basis of ease of 

use with particular atmospheric dispersion model outputs

 Our prior analysis of observations and simulations of a short-range 

dispersion field experiment indicate that the differences between toxic 

loads predicted by these models can be substantial

 We have recently analyzed simulations of realizations of a realistic 

chemical attack using real toxicity parameters for different chemicals

 This provides a context for whether the differences matter at 

concentrations that correspond to lethal effects
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Choice of toxic load model –
VTHREAT simulations

 We used results from NCAR’s VTHREAT simulation environment to 

generate four realizations of a chemical attack

 18 instantaneous sources intended to simulate a chemical artillery attack
 Sources spread over a 100 m × 200 m impact area

 Two atmospheric stability conditions (neutral, convective)

 Two release geometries (attack axis along-wind or cross-wind)

 Have not yet simulated an ensemble of realizations

 Investigated toxic effects using toxicity parameters of a chemical 

warfare agent (not shown in this presentation) and chlorine

 For chlorine, we considered each source as a separate release and scaled 

the release size to 136 kg (2 150-lb. cylinders), 1 ton, or 10 tons
 Examined toxic load contours over the 1% lethal to 99% lethal range

 VTHREAT simulations were of a neutrally-buoyant gas – we are ignoring 

the (substantial) chlorine dense gas dispersion effects

 Note:  many chemical warfare agents have very high probit slopes, so toxic 

effects vary suddenly across plume (all dead or none)
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VTHREAT-simulated chemical attack
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Ratio of “area above toxic load threshold” to “area above ten Berge toxic 
load threshold” (3 different toxic load models) – Multiple chlorine 
releases / Neutral stability
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Ratio of “area above toxic load threshold” to “area above ten Berge toxic 
load threshold” (3 different toxic load models) – Multiple chlorine 
releases / Convective atmosphere
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VTHREAT-simulated chlorine attack – Observations

 The size of hazardous areas over which lethal effects vary between 

the 1% and 99% level vary by a factor of 2 to 3 between the highest-

predicting toxic load model (peak concentration model) and the 

lowest-predicting model (average concentration model)

 Have not yet calculated casualty ratios for chlorine

 The magnitude of the variation depends not only on which source is 

considered (individual variability) but also the release size and the 

toxicity of the hazardous material

 No obvious trends deduced yet

 Note:  we have not yet examined a true ensemble of instantaneous 

sources – the variation between toxic load models could be different 

if we examine true individual realizations

 The dispersion of our 18 instantaneous sources is somewhat correlated 

due to the spatial proximity of the sources
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 Toxicological experiments sometimes yield a very large uncertainty in 

the derived toxicological parameters

 This uncertainty is not typically propagated in consequence assessment 

studies or communicated to users

 Uncertainties in the population distribution are often poorly characterized

 Also, using high spatial resolution dispersion model outputs with low 

resolution population data could result in inaccurate casualty estimates
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 There is a feeling within the consequence assessment community that the 

consequences of real-world hazardous releases are overpredicted

 Based almost entirely on overt chlorine releases (accidental and intentional)

 Effects of evacuation and sheltering could be important; poorly understood
 Metric is often “distance from source where people died vs. distance where lethal 

concentration predicted”, but rarely know population behavior – or actual concentrations

 Need to understand effects of microscale variation in terrain (dense gas gravity 

effects), land cover (vegetative filtration), population heterogeneity

 Would be useful to consider other types of chemicals (e.g., ammonia 

accidents) or less overt releases (e.g., Bhopal) with modern models 
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Modern consequence assessment – Other issues  [2]
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2009 GMU Conference on AT&D Modeling
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Summary and recommendations  [1 of 2]

 Using low-order ensemble moments (mean, etc.) of the concentration in 

toxicity models can produce inaccurate casualty estimates 

 Dosage is potentially problematic, toxic load more so

 Toxic load modeling, although touted as more accurate, has drawbacks

 Notably, the aforementioned problem with ensemble-mean concentrations

 No validated method of extending the model to the case of time-varying 

concentrations (competing models can disagree significantly)

 Extra toxicity parameters (exponent, time averaging) – effect on uncertainty?

 Possible that the more advanced toxicity model could give worse results??

 The uncertainties in toxicity modeling and population modeling 

(distribution, movement, sheltering) are not always well understood

 Analytical uncertainties also are not always communicated to model users 

and the consumers of modeling products
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Summary and recommendations  [2 of 2]

 Health effects modeling and population modeling should be recognized as 

potentially critical contributors to consequence assessment studies

 Less well understood than physics-based modeling, but not less important

 If inaccurate or misleading, may reduce confidence in entire model
 In some cases, (ensemble) dispersion modeling may not be the dominant source of error

 Consequence assessment models may need better treatment of 

concentration fluctuations, toxic effects, & population statics and dynamics

 Even if experiments are not possible, theoretical and parametric studies can be 

used to bound the problem for decision-makers

 Some recent U.S. experiments (micro-terrain/dense gas, time-varying toxicity)

 Modeling should be viewed as an end-to-end process

 True even if consequence estimation performed outside of dispersion model

 Propagation of uncertainty should be tracked from start to finish
 The order in which spatial, temporal, and ensemble averaging occurs is important

 Harmonisation is necessary to ensure that the end-to-end effort makes sense 

and that nothing is overlooked due to diffusion of responsibility
 Model developers (dispersion, consequence assessment) must work with model users, 

model evaluators, and consumers of modeling products 17 of 17
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Some proposed extensions of the toxic load model to the 
case of time-varying concentrations



Concentration averaging time –
potential effects on inputs to toxic load models

In-plume fluctuations

Intermittent gaps

10-minute time 

averaging

1-minute time 

averaging

FUSION Field Trial 2007 (FFT 07) Release 54, Sampler 78

10-minute morning release of propylene gas


