HARMO14 - 14th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes Kos Island, Greece, October 2 to 6, 2011

Effect of Unstable Thermal Stratification on the Atmospheric Boundary Layer above Urban Street Canyons by Large-Eddy Simulation

W.C. Cheng and Chun-Ho Liu*

Department of Mechanical Engineering, The University of Hong Kong Pokfulam Road, Hong Kong, China

Parallel Session 8

Urban Scale and Street Canyon Modelling: Meteorology and Air Quality

H14-70: October 4, 2011

*Correspondence: **Dr. Chun-Ho LIU**Department of Mechanical Engineering, 7/F Haking Wong Building,
The University of Hong Kong, Pokfulam Road, Hong Kong.
Tel: (852) 2859 7901; Fax: (852) 2858 5415; liuchunho@graduate.hku.hk

Contents

- Introduction
 - Velocity and temperature log profiles
- Methodology
 - LES model and the computational domain
- Results and Discussion
 - Profiles above urban street canyons and the effect of unstable thermal stratifications
- Conclusion

Introduction

- For high-Reynolds-number (Re) flows above idealized homogeneous surface, the wind profile can be described by the law of the wall (Spalding 1962)
- Wall units (u^+, z^+) were suggested to normalize the velocity (u) and wall distance (z) as

$$u^+ = \frac{u}{u_*} \qquad \qquad z^+ = z \frac{u_*}{v}$$

- Near the wall, three characteristic layers of the wind profiles are suggested
 - Laminar sublayer,
 - Buffer layer, and
 - Log-law region

• In the laminar sublayer (approximately $z^+ < 5$), the velocity is directly proportional to the wall distance as

$$u^{+} = z^{+}$$

• In the log-law region (approximately $z^+ > 30$),

$$u^+ = A_u \ln(z^+) + B_u$$

- A_u and B_u are constants
- In the buffer region, the velocity profile exhibits a behavior between those in the laminar sublayer and the log-law region

 Similarly, the temperature profile can be approximated by the logarithmic form as

$$\theta^+ = A_\theta \ln(z^+) + B_\theta$$

- where θ^+ (= θ/θ_*) is the temperature in wall unit with $\theta_* = (\partial \theta/\partial z|_{\text{wall}}/u_*)$ the friction temperature, and A_θ and B_θ are constants
- In this study, we investigate how the log profiles of wind and temperature above urban street canyon change with unstable thermal stratifications

Methodology

- Large-eddy simulation (LES) using open-source CFD code OpenFOAM (OpenFOAM 2011)
- One-equation subgrid-scale (SGS) model (Schuman 1975)

• The domain dimensions are $24h \times 5h \times 8h$. Twelve identical street canyons are considered in order to capture the large-scale turbulence over the buildings in the urban atmospheric boundary layer.

- Re (= $U_f h / v$) is about 10,000
- Richardson number
 - Ri (= $\alpha g L(\Theta \Theta_f)/U_f^2$) is equal to 0, -0.022, -0.062, -0.098, 0.176, -0.375, and -1.086
- LES domain is discretized into 2.4 million of brick elements with grid spacing $1.4\times10^{-2}h$ and $4\times10^{-1}h$ at the bottom and top boundaries, respectively
- After $200h/{\rm U}_f$ of transient calculation, the results are ensemble averaged (denoted by <•>) using another $200h/{\rm U}_f$ of LES data at time interval $0.1h/{\rm U}_f$
- Detailed model validation and comparison were reported in Cheng and Liu (2011a) and (b).

Results and Discussion

 Substantially modifications in the vertical profiles of wind and temperature above the street canyons at different Ri are observed

- Velocity in wall unit (u^+) against z^+ at different Ri
- Boundary layer is in fact developed over the street canyons therefore vertical displacement height of h is employed
- The slope of the curves in general decreases with decreasing Ri. The profiles fall onto a straight line at $50 < z^+ < 300$, which correspond to the logarithmic profile

• As Ri increases from -1 to 0, A_u increases from 1.7 to 2.4 while B_u decreases from 0.7 to -2.2.

$$u^+ = A_u \ln(z^+) + B_u$$

- Temperature (θ^+) against $\ln(z^+)$
- The slope of the curves increases with decreasing Ri that become less negative
- Good least-square fittings are obtained in the range about $150 < z^+ < 300$

• Moving toward neutral stratification for increasing Ri from -1 to 0, the values of A_{θ} decrease from -0.8 to -2.5 while the values of B_{θ} increase from -2.5 to 3.

Conclusion

- Seven sets of LES are performed to investigate the effect of unstable thermal stratifications on the behaviours of wind and temperature above idealized 2D urban street canyons
- The wind and temperature profiles in unstable stratification can be described by logarithmic profiles in which the slope and *y*-intercept are functions of thermal stratification
- As Ri decreases from 0 to -1 (more unstable), A_u and B_{θ} decrease while A_{θ} and B_u increase
- Changes in A_u and A_θ are due to the enhanced momentum exchange and heat transfer in the turbulent boundary layer

References

- W. C., Cheng and C.-H, Liu, 2011a: Large-eddy simulation of flow and pollutant transports in and above two-dimensional idealized street canyons. *Boundary-Layer Meteorol.*, **129**, 411-437.
- W. C., Cheng and C.-H., Liu, 2011b: Large-eddy simulation of turbulent transports in urban street canyons in different thermal stabilities. J. Wind. Eng. Ind. Aerodyn., **99**, 434-442.
- OpenFOAM 2011: http://www.opencfd.co.uk/openfoam/.
- U., Schumann 1975: Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys., **18**: 376-404.
- D. B., Spalding 1962: A new analytical expression for the drag of a flat plane valid for both the turbulent and laminar regimes. Int. J. Heat Mass Transf., **5**, 1133-1138.