

1

Sensitivity of Ozone and Aerosols to Precursor Emissions in Europe

Ş. Aksoyoğlu, J. Keller, D. Oderbolz, I. Barmpadimos, A.S.H. Prévôt, U. Baltensperger

> Laboratory of Atmospheric Chemistry (LAC) Paul Scherrer Institute, Switzerland http://lac.web.psi.ch

> > HARMO14, Kos, 2-6 October 2011

Model system

Model Domains

Lambert Conic Conformal
14 layers in CAMx
CB05 gas-phase mechanism
RADM aqueous chemistry
ISORROPIA
SOAP aerosol module (7 SOA)
Oligomerization
PM2.5
January, June 2006

Paul Scherrer Institut

Sensitivity tests

Isoprene:

ozone and secondary organic aerosols (SOA) high uncertainty in emissions (factor of 3-5) increased emissions in summer by a factor of 4

NO_x and VOC :

ozone

reduced emissions in summer by 30%

NO_x and NH_3 :

inorganic aerosols, $NO_x \dots \longrightarrow HNO_3(g) + NH_3(g) \longrightarrow NH_4NO_3(s)$ Reduced emissions in winter and summer by 15%

Paul Scherrer Institut

PM2.5 : Comparison with measurements (summer)

Paul Scherrer Institut

PM2.5 : Comparison with measurements (winter)

7

Ozone : Sensitivity to isoprene emissions

effect of increased emissions on the afternoon ozone concentrations in June 2006

Ozone : Sensitivity to NO_x and VOC emissions

effect of reduced emissions on the afternoon ozone concentrations

8

Ozone : change in sensitivity between 1993 and 2006

effect of reduced emissions on the afternoon ozone concentrations

1993

2006

 $(\Delta O_{3 (BC - VOC)}) - (\Delta O_{3 (BC - NOx)})$ red : VOC - sensitive blue : NO_x- sensitive

9

Paul Scherrer Institut

SOA : Sensitivity to isoprene emissions

PM2.5 Monthly average (µg/m³)

June 2006

SOA : Sensitivity to isoprene emissions

Anthropogenic versus biogenic SOA in June 2006 Monthly averages (µg/m³)

SOA is produced mainly from *biogenic precursors* in summer

SOA : Sensitivity to isoprene emissions

effect of increased isoprene emissions on the monthly average SOA concentrations (June 2006)

12

BSOA : Fractional Composition

produced mainly from mono- and sesquiterpenes as well as oligomerization

Bio-SOA summer

Attention:

Sesquiterpene emissions might be too high.

BSOA fractions might change significantly with lower SQT emissions.

Inorganic Aerosols : Sensitivity to NO_x and NH₃ emissions

effect of decreased emissions on aerosol concentrations

January 2006

June 2006

red : NH₃ - sensitive blue : NO_x- sensitive

Paul Scherrer Institut

Labor für Atmosphären-Chemie

Conclusions

• The effect of increased isoprene emissions (within the uncertainty range) on afternoon ozone in summer is predicted to be up to 10%.

Ozone formation in Europe is mainly sensitive to NO_x emissions except some urban areas. The sensitivity to precursor emissions has likely become weaker during the last 2 decades due to large emission reductions.

SOA in summer was predicted to come mainly from biogenic sources. However, contribution of isoprene was small (due to low yields). Monoterpenes, sesquiterpenes and oligomerization are the main sources of SOA in this study. Updating biogenic emissions is going on.

Inorganic aerosol mass is more sensitive to ammonia emissions in a large part of Europe. Sensitivity to ammonia is weaker in summer due to higher emissions and lower ammonium nitrate concentrations.

Paul Scherrer Institut

Acknowledgements

Swiss Federal Office of Environment (FOEN) ENVIRON Inc. TNO ECMWF, M. Schultz EMPA/NABEL **INFRAS** MeteoSwiss Meteotest ACCENT