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Abstract: The European Union through the Air Quality Framework Directive establishes that objective estimation 
techniques may be used for the assessment of the ambient air quality in all zones and agglomerations where the level 
of pollutants is below the lower assessment threshold as occurs with the levels of some regulated metals in some 
urban areas of Cantabria (Northern Spain). Multivariate regression techniques are widely used in the literature to 
estimate the concentration of air pollutants, e.g. Multiple Linear Regression (MLR) and Principal Component 
Regression (PCR). Nevertheless, Partial Least Squares Regression (PLSR) combines the advantages of both 
mentioned techniques. The aim of this work is to estimate the annual levels of the EU regulated metals i.e. arsenic, 
cadmium, nickel and lead, on airborne PM10 in 2008 at three urban sites in the Cantabria Region: Santander (SANT), 
Castro Urdiales (CAST) and Reinosa (REIN). For this purpose, statistical models based on PLSR have been 
developed. Furthermore, a comparison was conducted between the estimated metal levels using PLSR and those 
estimated using MLR and PCR techniques, employed in previous works. The results show that the estimations based 
on MLR and PLSR fulfill the EU uncertainty requirements for the objective estimations (lower than 100%), unlike 
PCR-based estimation models. Consequently, statistical estimation models based on MLR and PLSR provide valid 
approaches to estimate the concentration levels of the EU regulated heavy metals and could be employed to assess the 
air quality at the considered urban areas as an alternative to experimental measurements. 
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INTRODUCTION 
The term Particulate Matter (PM) is used to describe a mixture of solid particles and liquid droplets 
suspended in the atmosphere. These particles originate from natural sources, such as volcanic eruptions, 
seismic activity, forest fires, winds of great intensity or natural particle transport from dry regions; and 
from anthropogenic sources, including all types of combustion (e.g. power plants, diesel engines, etc.) 
and some industrial processes (Pires, J.C.M. et al., 2008). The relationship between the presence of 
aerosol particles in the atmosphere and adverse health effects has been well recognized and reported in 
the literature (Pope III, C.A. et al., 2009 and Li, X. et al., 2011). Nevertheless, PM still remains one of the 
most important air pollutants responsible for causing damages to human health in Europe (Koelemeijer, 
R.B.A. et al., 2006). It has been demonstrated that the pernicious effects of PM are not only due to its 
physical attributes such as mass concentration and size distribution, but also to its chemical composition, 
which has been studied extensively during the last decades and reviewed in the literature (Querol, X. et 
al., 2004). It could include some acidic and toxic species such as heavy metals and aromatic compounds 
(Karar, K, and A.K. Gupta, 2006).  
 
In this regard, the European Union (EU) has included limits for PM10 and PM2.5 in the air quality 
directives; 1999/30/EC and 2008/50/EC. Furthermore, it has established a set of air quality targets for 
some trace metals in PM10, namely: As, Cd, Ni (Directive 2004/107/EC) and Pb (Directive 2008/50/EC). 
Additionally, the EU regulation states that objective estimation techniques shall be sufficient for the 
assessment of the ambient air quality in all zones and agglomerations where the level of pollutants is 
below the lower assessment threshold. This situation occurs with the levels of certain metals in some of 
the studied urban areas of Cantabria (Arruti, A. et al., 2011). As shown in Figure 1, the annual mean 
concentration in 2008 of the four regulated metals was well below the lower assessment threshold in 
every study site. For this reason, it is concluded that objective estimation techniques are a proper 
alternative to experimental measurements to assess the air quality in these locations. 
 
According to the Guidance on Assessment under the EU Air Quality Directives, “objective estimation 
techniques” is a fairly broad term which includes mathematical methods to calculate concentrations from 
values measured at other locations and/or times, based on scientific knowledge of the concentration 
distribution. Empirical data-based modelling falls within this definition and represents an attractive 



alternative to mechanistic modelling given that it requires less specific knowledge of the system under 
consideration. Empirical modelling techniques require data (measurements) of those variables believed to 
be representative of the process behaviour and of the properties of the system output (Kim, M. et al., 
2009). Some studies have been published in the literature with the aim of estimating certain atmospheric 
pollutants by using techniques based on empirical models such as multiple linear regression (MLR), 
feedforward neural networks and principal component regression (PCR). Moreover, in a previous study 
carried out by Arruti, A. et al. (2011), estimations of regulated metal levels in ambient air by statistical 
MLR and PCR models have been conducted. Nonetheless, there are other promising techniques such as 
partial least squares regression (PLSR) that might lead to an improvement of the estimations, since it 
combines features from principal component analysis (PCA) and multiple linear regression (MLR): as 
MLR, PLSR creates a linear combination of the predictor variables (X-matrix, which is constituted by 
environmental observations in this study) that best correlates with the response variables (Y-matrix, 
composed of metal levels observations); and as PCA, it decomposes the X-matrix in order to obtain 
components that best explain X. Specifically, PLSR searches for a set of components (called latent 
variables) that performs a simultaneous decomposition of X and Y with the constraint that these 
components explain as much as possible of the covariance between X and Y. It is followed by a 
regression step where the latent variables obtained from X are used to predict Y (Abdi, H., 2010). This 
technique has been already used for the characterisation and the determination of profiles of polycyclic 
aromatic hydrocarbons in PM10 (Wingfors, H. et al., 2001) providing positive results. 
 
The aim of this work is to estimate the annual levels of the EU regulated metals i.e. arsenic, cadmium, 
nickel and lead, on airborne PM10 for 2008 at three sites in the Cantabria Region (Northern Spain): 
Santander, Castro Urdiales and Reinosa. 

 
METHODOLOGY 
 
Area of study 
This work was conducted at three different urban sites (Figure 2): Santander (SANT), capital of Cantabria 
extended over a bay, and with a broad industry presence; Castro Urdiales (CAST), a coastal urban site in 
the vicinity of a national highway and an industrial area; and Reinosa (REIN), an inland urban site close 
to a steel manufacturing plant. These sites are described in detail by Arruti, A. et al. (2011). 
 

 
Figure 2. Areas of study and sampling sites in Cantabria: (a) Reinosa, (b) Santander and (c) Castro Urdiales. 

 
Partial Least Squares Regression (PLSR) Model 
Statistical models based on Partial Least Square Regression (PLSR) have been developed to estimate the 
ambient air concentrations of the EU regulated metals. For this purpose, the data set used in this study is 
divided into response variables and predictor variables. The former consist of regulated metal levels (ng m-3) 

Figure 1. 2008 annual mean of regulated metals expressed as percent of their respective target values. TV: Target 
value; UAT: Upper assessment threshold; LAT: Lower assessment threshold; SANT: Santander; CAST: Castro 

Urdiales; REIN: Reinosa. 



on airborne PM10 for 2008 at the three considered sites obtained from previous works (Arruti, A. et al., 
2011). In turn, predictor variables are constituted by: qualitative or nominal variables (Table 1), taking 
into account the seasonal, the Saharan dust intrusion and the weekend effects; and quantitative or 
continuous variables, namely, meteorological data and major atmospheric pollutants concentration, which 
are detailed in Table 2. The continuous variables are measured automatically on real time at the 
monitoring stations of the Cantabria Regional Air Quality Monitoring Network and are available at the 
Regional Environment Ministry website.  
 
Prior to analysis, predictor variables were auto-scaled. In addition, Cross-validation was used to estimate 
the number of significant components. PLS Toolbox (Eigenvector Research, Inc.) for MATLAB was used 
in the present study to develop the PLSR models.  
 
Table 1. Nominal predictor variables 
 

Notation Description Codification
SE Season 1: Winter; 2: Spring; 3: Summer; 4: Fall 
SD Saharan dust intrusion 0: No intrusion; 1: Intrusion 
WE Weekend 0: No weekend; 1: Weekend 

 
Table 2. Continuous predictor variables 
 

Notation Type Descriptiona Units
PM10 Major air pollutant Average natural logarithm of PM10 concentration (µg m-3) - 

SO2 Major air pollutant Average concentration of sulphur dioxide µg m-3

O3 Major air pollutant Average concentration of ozone µg m-3

NOx Major air pollutant Average concentration of nitrogen oxides µg m-3

T Meteorological Average temperature ºC 
RH Meteorological Average relative humidity % 
WD Meteorological Prevailing wind direction º 
PP Meteorological Cumulative precipitation L m-2

a According to the corresponding PM10 sampling periods, daily values of continuous variables were calculated at 
SANT site and 48-hour values were calculated at REIN and CAST sites 
 
Evaluation of model performance 
The statistical parameters used in the present work to evaluate the model performance are: the correlation 
coefficient (r), the fraction bias (FB), the root mean square error (RMSE), the normalised mean square 
error (NMSE) and the fractional variance (FV). Additionally, for the validation of the objective 
estimation and modelling techniques in the context of the Air Quality Directives, two indexes of 
uncertainty were used: the relative maximum error without timing (RME) and the relative directive error 
(RDE). The RME is the largest concentration difference of all percentile (p) differences normalized by 
the respective measures value. The RDE is the difference between the closest observed concentration to 
the limit/target value and the correspondingly ranked modelled concentration normalized by the 
limit/target value. 
 
RESULTS AND DISCUSSION 
Tables 3-5 show the performance indexes of different models developed for SANT, CAST and REIN 
sites, respectively. Due to lack of enough data in Reinosa and Castro Urdiales, PCR estimations are only 
available at SANT site.  
 
The annual mean concentrations are estimated correctly, which results in low values of FB index. 
However, PLSR improves the FB index when is possible. PLSR provides greater or equal correlation 
coefficients than MLR, but higher than those provided by PCR. The r values are within the range of 0.4-
0.8 at the SANT site, and 0.6-0.9 at the CAST and REIN sites. Even though the three techniques provide 
acceptable estimations, their performance is heavily dependent on the place being studied. In this respect, 
some difficulties were found in estimating the daily concentrations, which is reflected on NMSE and FV 
indexes. To illustrate this, daily Pb concentrations at SANT and CAST site are presented in Figure 3(a) 
and Figure 3(b), respectively. The highest observed Pb concentrations at SANT site are underestimated, 



unlike than those at CAST site. As a result, greater values of NMSE and FV indexes are obtained for Pb 
at SANT site with respect to CAST site.  
 
Table 3. Performance indexes for the estimations at SANT site 
 

Metal Technique 
Annual mean (ng m-3) Performance indexes EU uncertainty 

Observed Estimated r  FB RMSE FV NMSE RME (%) RDE (%) 

Pb  
MLR 6.4 6.3 0.6 0.0 5.6 1.07 0.8 48 3.2
PCR 6.4 6.4 0.5 0.0 6.0 1.27 0.9 59 2.1 
PLSR 6.4 6.4 0.6 0.0 5.7 1.06 0.8 60 3.8 

As  
MLR 0.8 0.9 0.8 0.11 1.1 0.45 1.8 33 69 
PCR 0.8 0.9 0.6 -0.2 1.7 1.24 3.6 67 42 
PLSR 0.8 0.8 0.8 0.0 1.2 0.38 2.1 32 79 

Ni  
MLR 0.9 0.9 0.5 0.0 0.7 1.24 0.6 59 12 
PCR 0.9 0.9 0.4 0.0 0.7 1.50 0.7 55 12 
PLSR 0.9 0.9 0.5 0.0 0.7 1.16 0.6 68 14 

Cd  
MLR 0.3 0.2 0.4 0.0 0.4 1.32 2.9 72 42 
PCR 0.3 0.3 0.4 -1.8 4.0 1.82 181 259 151 
PLSR 0.3 0.3 0.5 0.0 0.4 1.32 2.8 70 41 

 
Table 4. Performance indexes for the estimations at CAST site 
 

Metal Technique 
Annual mean (ng m-3) Performance indexes EU uncertainty 

Observed Estimated r  FB RMSE FV NMSE RME (%) RDE (%) 

Pb  MLR 8.0 8.4 0.9 0.0 17.4 0.26 0.1 20 1.5 
PLSR 8.0 8.0 0.9 0.0 3.2 0.15 0.2 19 1.5 

As  MLR 0.2 0.2 0.6 0.0 0.0 0.85 0.8 48 4.0 
PLSR 0.2 0.2 0.7 0.0 0.1 0.77 0.8 49 3.9 

Ni  MLR 3.0 3.0 0.8 0.0 2.2 0.48 0.3 36 22 
PLSR 3.0 3.0 0.8 0.0 1.7 0.48 0.3 34 22 

Cd  
MLR 0.1 0.1 0.8 -0.1 0.1 0.63 0.7 29 3.2 
PLSR 0.1 0.1 0.9 0.0 0.1 0.64 0.7 34 3.9 

 
Table 5. Performance indexes for the estimations at REIN site 
 

Metal Technique 
Annual mean (ng m-3) Performance indexes EU uncertainty 

Observed Estimated r FB RMSE FV NMSE RME (%) RDE (%)

Pb  MLR 11.2 11.2 0.9 0.0 4.4 0.11 0.2 16 0.3 
PLSR 11.2 11.2 0.9 0.0 4.2 010 0.1 18 1.0 

As  MLR 0.3 0.3 0.8 0.0 0.2 0.42 0.3 35 1.8 
PLSR 0.3 0.3 0.8 0.0 0.2 0.36 0.2 55 3.8 

Ni  MLR 2.0 2.0 0.8 0.0 0.8 0.42 0.2 28 9.0 
PLSR 2.0 2.0 0.9 0.0 0.7 0.28 0.1 95 6.9 

Cd  
MLR 0.2 0.2 0.9 -0.2 0.2 0.37 0.8 22 10.0 
PLSR 0.2 0.2 0.9 0.0 0.2 0.22 1.2 22 10.0 

 
Finally, as shown in Figure 3, PLSR and MLR estimations overlap throughout the period of study. This 
trend is observed in the estimations of each metal at all sites. In turn, PCR provides worse estimations, 
what is reflected in lower r values and greater RMSE, NMSE and FV values. 
 
EU Uncertainty 
Regarding the EU uncertainty requirements, the RME and RDE indexes for PLSR estimations as well as 
MLR estimations are below 100%. As a consequence, it is concluded that PLSR and MLR statistical 
models fulfill the EU uncertainty requirements for objective estimations. This cannot be extended to PCR 
models, as seen in the cadmium RME and RDE at SANT site (Table 3). 
 
CONCLUSIONS 
Partial least squares regression (PLSR) statistical models have been developed to estimate the ambient air 



levels of the EU regulated metals i.e. arsenic, cadmium, nickel and lead, from the airborne PM10 in 2008 
at three sites in Cantabria: Santander, Castro Urdiales and Reinosa. Furthermore, a comparison was 
conducted between the estimated metal levels using PLSR and those estimated using MLR and PCR 
techniques, employed in previous works. Results show that PLSR and MLR provide valid approaches to 
estimate the concentration levels of the regulated metals fulfilling the uncertainty requirements for 
objective estimations (RME and RDE lower than 100%). Therefore, statistical estimation models based 
on MLR and PLSR could be employed to assess the levels of metals in air at the considered urban areas 
as an alternative to experimental measurements, which would lead to save time, effort and resources. 
Further work will imply the application of more powerful estimation tools (e.g. neural networks) and the 
development of estimations of non-regulated metals with higher concentration levels on ambient air (e.g. 
Mn or Zn in the studied areas), which will demand more strict uncertainty requirements.  
 
AKNOWLEDGEMENTS 
The authors gratefully acknowledge the financial support from the Spanish Ministry of Economy and 
Competitiveness through the Project CMT2010-16068 and also the granting of a FPI research fellowship 
to Germán Santos.  
 
REFERENCES 
Abdi, H, 2010: Partial least squares regression and projection on latent structure regression (PLSR Regression). 

Wiley Interdiscip. Rev. Comput. Stat., 2(1), 97-106. 
Arruti, A, I. Fernández-Olmo and A. Irabien, 2011: Assessment of regional metal levels in ambient air by 

statistical regression models. J. Environ. Monit., 13(7), 1991-2000. 
EC Working group for ambient air quality directives, 2000: Guidance on assessment under the EU air quality 

directives - final draft. (http://europa.eu.int/comm/environment/air/pdf/guidanceunderairquality.pdf) 
Karar, K, and A.K. Gupta, 2006: Seasonal variations and chemicals characterization of ambient PM10 at 

residential and industrial sites of an urban region of Kolkata (Calcutta). India. Atmos. Res., 81, 36-53. 
Kim, M, Y. Kim, S. Sung and C. Yoo, 2009: Data-Driven Prediction Model of Indoor Air Quality by the 

Preprocessed Recurrent Neural Networks. Korean J. Chem. Eng., 27(6), 1675-1680. 
Koelemeijer, R.B.A, C.D. Homan and J. Matthijsen, 2006: Comparison of spatial and temporal variations of 

aerosol optical thickness and particulate matter over Europe. Atmos. Environ., 40(27), 5304-5315. 
Li, X, T. Hede, Y. Tu, C. Leck and H. Ågren, 2011: Glycine in aerosol water droplets: a critical assessment of 

Köhler theory by predicting surface tension from molecular dynamics simulations. Atmos. Chem. 
Phys., 11, 519-527. 

Pires, J.C.M, F.G. Martins, S.I.V. Sousa, M.C.M. Alvim-Ferraz and M.C. Pereira, 2008: Prediction of the 
Daily Mean PM10 Concentrations Using Linear Models. Am. J. Environ. Sci., 4(5), 445-453. 

Pope III, C.A, M. Ezzati and D.W. Dockery, 2009: Fine-particulate air pollution and life expectancy in the 
United States. N. Eng. J. Med., 360, 376-386. 

Querol, X, A. Alastuey, M.M. Viana, S. Rodríguez, B. Artiñano, P. Salvador, S. Garcia do Santos, R. 
Fernández Patier, C.R. Ruiz, J. de la Rosa, A. Sánchez de la Campa, M. Menéndez and J.I. Gil, 2004: 
Speciation and origin of PM10 and PM2.5 in Spain. J. Aerosol Sci., 35, 1151-1172. 

Wingfors, H, Å. Sjödin, P. Haglund and E. Brorström-Lundén, 2001: Characterisation and determination of 
profiles of polycyclic aromatic hydrocarbons in a traffic tunnel in Gothenburg, Sweden. Atmos. 
Environ., 35, 6361-6369. 

Figure 3. Comparison between observed and estimated levels of Pb at: a) SANT site; b) CAST site. 
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