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Abstract: ADMS Urban is a non-linear static model whose input data p varies one simulated hour after the other. The 
model computes a high-dimensional concentration vector	ݕ = 	ℳ(݌) which can contain 10⁵ concentrations. A full-
year simulation of NO2 concentrations can take dozens of days of computations, which greatly limits the range of 
methods that can be applied to the model, especially for uncertainty quantification. This work proposes a method to 
replace ADMS Urban with a so-called emulator, i.e., a close approximation of ADMS Urban whose computational 
cost is negligible. First, the output concentration field	ݕ is projected on a few modes of a proper orthogonal 
decomposition[Ψଵ …	Ψே], so that	ݕ	 ≃ ∑ ௝ே௝ୀଵߙ Ψ௝ where ߙ௝ is the projection coefficient on j-th mode and N smaller 

than 10. Then, the reduced model ݂(݌) = 	શ்ℳ(݌) is replaced by a statistical emulator መ݂	so that መ݂(݌) ≃  and (݌)݂
the computational cost of መ݂(݌) is negligible.  
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INTRODUCTION 
ADMS Urban is a non-linear static model whose input data p varies from one simulated hour to the next. 
The input vector ݌	 ∈ 	ℝ௄ may essentially contain scalar values, such as meteorological variables, 
background concentrations and a few emission factors (in case the spatial distribution of the emissions is 
fixed). The model computes a high-dimensional concentration vector ݕ = 	ℳ(݌) which can contain 105 
concentrations. A full-year simulation of NO2 concentrations over a city can take dozens of days of 
computations, which greatly limits the range of methods that can be applied to the model, especially for 
uncertainty quantification. This work proposes a method to replace ADMS Urban with a so-called 
emulator, i.e., a reasonably close approximation of ADMS Urban whose computational cost is negligible. 
The ADMS Urban output field is first projected onto a reduced subspace. The relations between the 
projection coefficients and the input vector p are smooth enough to be emulated by a surrogate model 
whose computational cost is negligible. 
 
METHOD 
 
Dimension reduction 
 
First, we want to project any output concentration field y onto a subspace spanned by the reduced basis શ = [Ψଵ …	Ψே]. The reduced basis is chosen so as to represent the variability of the concentration fields. 
It can be determined by a principal component analysis on some training period. Then we write ݕ	 ≃∑ ௝ே௝ୀଵߙ Ψ௝ where ߙ௝ =  Ψ௝ is the projection coefficient on j-th principal component. In practice, we	்ݕ	
found that N = 8 principal components are enough to provide a good approximation, on average, to a 
sequence of concentration fields for a full year. 
 
In some cases, the input vector p might be of high dimension. Then a dimension reduction should be 
carried out on it as well. In this study, its dimension (K = 10) is low enough to skip this step. 
 
Emulation 
 
Second, the reduced model ݂(݌) = 	શ்ℳ(݌) is replaced by a statistical emulator መ݂	so that መ݂(݌) ≃  (݌)݂
and the computational cost of መ݂(݌) is negligible. In practice, one independent emulator is built for every 
component ௝݂(݌). In order to build the emulator	 መ݂௝, we first need M training samples ௝݂൫݌(௜)൯. The 
samples ݌(௜) are generated with latin hypercube sampling. The emulator is then made of two parts: a 



regression part, and a part that is essentially an interpolation between different samples ௝݂൫݌(௜)൯ (or, more 
precisely, the regression residuals of the samples). With a linear regression, the emulator reads as in 
equation (1). መ݂௝(݌) =෍ ௞݌௝,௞ߚ +	෍ ,݌௝൫ݓ ,(ଵ)݌ … , ൤	൯(ெ)݌ ௝݂(݌(௜)) −෍ ௞(௜)௄௞ୀଵ݌௝,௞ߚ ൨ெ௜ୀଵ௄௞ୀଵ  

(1) 
 
The regression is usually a multiple linear regression, but a nonlinear regression may be applied as well. 
It represents the basic dependencies between the input variables and the projection coefficient ߙ௝. We 
found that the dependence of ߙ௝ with respect to the input variables is often smooth, yet nonlinear. In 
practice, the regression part is not the key part of the emulator. 
 
The most important part is the interpolation of the residuals ௝݂(݌(௜)) − ∑ ௞(௜)௄௞ୀଵ݌௝,௞ߚ 	of the regression. 
The weights  ݓ௝൫݌, ,(ଵ)݌ … ,  There exist many methods to compute these weights. A classical method is kriging, which is often .(௜)݌ essentially depend on the distance between p and the different samples	൯(ெ)݌
used in Gaussian process emulators (Sacks et al., 1989). However this approach is computationally 
intensive, even with K = 10 input variables. We therefore investigated the inverse distance weighting as 
proposed in Joseph and Kang (2011) and the interpolation with radial basis functions. In this study, we 
simply use the mean of the n closest neighbors, i.e., ݓ௝ is zero for all samples except for the closest 

samples ݌(௜) to p. The n closest samples are averaged, hence the weights are 
ଵ௡. The metric d to determine 

the closest samples is in the form ݀൫݌, ൯(௜)݌ = 	ට∑ ௄݌)௞ߠ − ௄(௜))ଶ௄௞ୀଵ݌ 	 where the coefficients ߠ௞ > 0 are 

determined either by manual tuning or by cross-validation. The most important input variables should be 
given a high ߠ௞ so as to strongly constrain the metric. 
 
CASE STUDY 
 
We evaluate the accuracy of the reduction and the emulation, and summarize the computational costs for 
the generation of the emulator. The application is the simulation of NO2 concentrations every 3 hours 
across the city Clermont-Ferrand (France) for the full year 2008 (2928 dates). 
 
Input variables 
 
The meteorological data are the wind speed and the wind direction at a meteorological station. The 
temperature is used as well, for the chemical mechanism. The cloud coverage, homogeneous over the 
domain, is used to compute the vertical mixing. The Julian day is necessary to compute the solar 
radiation. ADMS Urban also takes into account the rain intensity. In total, we therefore have 6 
meteorological input scalars. 
 
The spatial distribution of the emissions is fixed and is part of the model ℳ. ADMS Urban relies on 
emission factors, which depends on the month and on the day type (weekday, Saturday and Sunday). All 
the emission factors are also part of the model. So, the emissions vary according to the Julian day and the 
hour of the day - which makes 1 additional variable in p. We need the background concentrations (one 
scalar for the whole domain) for NO2, NOx and O3. We decided to set the COV background 
concentrations to 15 µg m-3. Hence we have 3 additional input variables. In total, p contains K = 10 
components. 
 
Dimension reduction 
 
We applied the principal component analysis to the full year 2008, but we also noticed that similar results 
are obtained with 6-month training period. We decided to project the output concentration fields on 8 
principal components. The unexplained variance over the full year is less than 1% of the total variance, as 
depicted in Figure 1. The first principal component, as shown in Figure 2(a) corresponds to the emission 
areas, especially linked to traffic. The second principal component enables to modulate the intensity of 



emissions. The third and the forth principal components are presumably related to dispersion due to 
principal wind directions, as illustrated in Figure 2(b). The fifth principal component is an isotropic 
dispersion. For the other principal components, it is more difficult to identify a physical or chemical 
driving process. 

 
Figure 1. Unexplained variance against the number of selected principal components. 
 

 
Figure 2. First principal component on left (a) and third principal component on right (b). 
 
We compare the simulation to its projection on the 8 principal components over the full year 2008. The 
fields are correlated at 99% and unbiased. The root mean square error (RMSE) is of 2.37 µg m-3, which 
represents about 10% of the mean simulated concentration of 22.6 µg m-3. 
 
Now we compare the projection of the full-year simulation to the observations. The performance is 
similar to the non-projected simulation. The correlation with the observations is 0.65, and the RMSE is 
18.0 µg m-3.  
 
Note that the projection basis can be determined with a smaller temporal sequence of ADMS Urban 
outputs. For instance, the basis can be determined with just the first 6 months of the year, and applied to 
the next 6 months, without significant changes in performance. 
 
Emulation 
 
We rely on M = 1000 samples to build the 8 emulators (one for each projection coefficient). We use a 
linear regression and the mean residuals from the 7 closest neighbors. The metric coefficient ߠ௞ is 
determined with leave-one-out cross-validation by the optimization algorithm COBYLA (Powell, 1994), 
which stands for Constrained Optimization BY Linear Approximations. 
 
We compare the simulation to its approximation after reconstruction on the 8 principal components over 
the full year 2008. The fields are correlated at 86%. The bias is of 1.4 µg m-3. The RMSE is of 7.9 µg m-3 
with a mean emulated concentration of 20.6 µg m-3, which represents more than 30%. This high value is 



moderated by the analysis of errors distributions. The distribution of the scores (computed per date) of the 
emulation are shown in Figure 3. Most of the approximate fields over the year have intermediate but still 
high scores. 
 

 
Figure 3. Distributions of scores (per date) of the emulation compared to the full simulation: (a) bias on left, (b) 
correlation on center and (c) RMSE on right. 
 
Compared to observations, the performance of the approximated fields is slightly deteriorated compared 
to the performance of the simulation. The relative RMSE increases by about 4% and the correlation 
decreases by about 1%. The RMSE of the emulated fields is 19.1 µg m-3. The distribution of scores, 
illustrated in Figure 4, show the same trend as described above: the simulation obtains the highest scores, 
but the emulation is more competitive for intermediate but still acceptable scores. 
 

 
Figure 4. Distributions of scores to observations: (a) bias on left, (b) correlation on center and (c) RMSE on left for 
the simulation in blue and for the emulation in cyan. 
 
CONCLUSION 
 
In this paper, ADMS Urban has been replaced by a so-called emulator, after a reduction step based on 
principal component analysis. For a full year simulation of 3-hour NO2 concentrations, the estimated 
computational cost to build the emulator is less than the full year simulation: the principal component 
analysis may require about 6 months of simulation, and M = 1000 samples (i.e., the equivalent of a 4-
month simulation) were used to build the coefficient emulators. The emulator can become a useful, if not 
essential, tool for uncertainty quantification over long time periods. Indeed, one can then generate a huge 
ensemble of simulations over a full year, with negligible cost, while it would be intractable with the full 
model. It may even be possible to approximate the full probability density function of the concentrations, 
after large Monte Carlo simulations. 
 
The emulator may be used in a context of impact studies (i.e., focusing on yearly or monthly averages) 
and in an operational context. It could easily be combined with data assimilation (Tilloy et al., 2013). 
Another application could be inverse modeling of emissions where the computational cost of the model is 
a key constraint. More generally, the availability of an emulator will allow to investigate directions and 
new methods that were previously out of reach because of the computational cost of the model. 
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