ARIA Technologies péra Garnie Gaillon chemical reactions at street scale Lagrangian particle dispersion mod

H. Kaplan, C. Orly, J. Moussafir, O. Oldrini, F. Mahe and **A. Albergel**

ARIA Technologies SA

8-10, rue de la Ferme – 92100 Boulogne Billancourt – France Telephone: +33 (0)1 46 08 68 60 – Fax: +33 (0)1 41 41 93 17 E-mail: info@aria.fr – http://www.aria.fr

CONTEXT: Urban air quality

NO_x emissions

Are NO₂ concentrations compliant with UE Standards?

Goals of the study

- Chemical reaction formulation for LPDM at street level.
- Are the segregation terms significant?
- Sensitivity to the NO/NO₂ ratio in the emission source.
- Sensitivity to the city level background.
- What are the relevant reactions at street scale applied to traffic pollution for operational use?

Study case

Domain and Air Quality measurements

Model formulation

Chemical reactions

- The model describes emission of NO_x from traffic inside a constant background of ozone, Bo₃
- Each particle released from the source carries an initial mass of NO (m_{NO}), NO₂ (m_{NO2}) and a deficit from the Ozone background (mdef_{O3}) [Alessandrini et. al. (2009) see also H14-188]
- NO + O₃ \rightarrow NO₂ + O₂ (k=0.31) [1/(ppm.s)]
- $NO_2 + O_2 + hv \rightarrow NO + O_3$ (J=0.0145e^{-0.4/cosQ}) [1/s]

Model formulation

The rate of change of particle's content

$$\frac{dm_{NO}}{dt} = -\frac{dm_{NO2}}{dt} = -\frac{dm_{defO_3}}{dt} = -k(B_{O_3}m_{NO} - < C_{NO} > m_{defO_3}) + Jm_{NO_2}$$

Concentration

 Summation in cell divided by the cell volume gives the average reaction rate equation

$$\begin{split} \frac{d < C_{NO}>}{dt} &= -\frac{d < C_{NO_2}>}{dt} = -k < C_{NO}> (B_{O_3} - < C_{defO_3}>) + J < C_{NO_2}> \\ -k < C_{NO}> < C_{O_3}> + J < C_{NO_2}> \end{split}$$

Model formulation

Traffic induced turbulence

• The moving vehicle induces a turbulence which effect the pollutant dispersion near the source. This turbulence is modeled as an injected TKE with emission rate \hat{Q}_{TKE} which should be modeled or measured.

Simple Model

• N - the number of vehicles per second $N = \frac{Q}{0.2}$

ullet Q - the NOx emission rate

- The emitted amount of NOx by a single vehicle ~ 0.2g/s
- V the average velocity of the vehicle (~10m/s)
- The amount of TKE per vehicle $\sim (\alpha V)^2 \alpha \approx 0.1$

$$\dot{\mathbf{Q}}_{\mathrm{TKE}} \prec \mathbf{N}(\alpha \mathbf{V})^2 = 5 \, \mathbf{K} \dot{\mathbf{Q}}$$

The segregation term

Definition

- A+B → C dA/dt=dB/dt=kAB
- d<A>/dt=d/dt=k<AB>=k(<A> + <A'B'>)

The Conditional Concentration

 The segregation term can be considered as a correction in the reaction equation by the conditional concentration

$$\frac{dm_{NO}}{dt} = -\frac{dm_{NO2}}{dt} = -\frac{dm_{defQ_3}}{dt} = -k(B_{O_3}m_{NO} - C_{NO}^{C}m_{defQ_3}) + Jm_{NO_2}$$

The segregation term

The conditional concentration

- The conditional concentration is the average concentration for particles along their trajectories
- The time evolution of conditional concentration is given by:

$$\frac{dC^{C}_{NO}}{dt} = -\frac{C^{C}_{NO} - \langle C_{NO} \rangle}{T_{mix}}$$

- The mixing time T_{mix} is proportional to the Lagrangian time scale ($T_{mix} = 0.6 T_L$)
- Including the segregation term has a negligible influence on the results at street scale

Model input data

Traffic emission data (NO_x)

Model input data

Meteorological (MM5) and O₃ data Date: 25.02.2011

Reference case

- NO/NO_X ratio = 0.75
- Turbulence parameter K = 0.5

Total NO_X Concentration

(red: measured; green calculated)

(red: measured; green calculated)

NO₂ BACKGROUND INFLUENCE

NO₂ predicted concentration

Sensitivity study

I Ref case : $NO/NO_X=0.75$ K=0.5 $B_{O3}=44$ At 15:00

Sensitivity Analysis

Ref : NO/NO_x=0.75 K=0.5 B₀₃=44

	CALCU	LATED	MEASURED		
	Н	0	Н	0	
NO ₂	(51) 76	(75) 97	75	109	
NO	103	146	91	100	

 $\mu g/m^3$

	NO/NOx=0.9		K=0.25		Bo3=88	
	Н	0	Н	0	Н	0
NO ₂	(30) 55	(42) 66	(65) 90	(80) 105	(63) 89	(90) 115
NO	125	177	128	167	95	135

• Numbers in parenthetic are without NO₂ background

The generic reaction set (GRS)

ROP in GRS

- The GRS equations describes reactions of NO and NO₂ with radical products (RP). $RP + NO \rightarrow NO_2$
- RP are result of photo-dissociation of reactive organic compounds (ROP) $ROP + h\nu \rightarrow RP + ROP$
- The time-scale of RP production from photo-dissociation of ROP is much larger than the transport time over domain of 1x1 Km → ROP emitted in the area will not affect the results
- If RP are known in the background, the whole set of the GRS should be solved and the result depends on the amount of RP background concentration.

CONCLUSION

- The current LPDM model was extended to include chemical reaction and self induced turbulence
- The segregation term is not important at street scale but should be included for large plume whose magnitude is much smaller than the turbulence scale.
- NO/NO_x=0.75 for Paris area and is not a free parameter of the model
- It is important to well assess NO₂ background when modeling an isolated district
- The whole set of GRS equation should be solved only in case that there is a large background concentration of RP

Next step:

NO₂ for « AirCity » Project

- Compute and forecast meteorological and air quality parameter within a 3m resolution
- Need of HPC: Ex Paris at 3M resolution 360 CPU

Thank you for your attention!

The generic reaction set (GRS)

$$ROP + h \nu \rightarrow RP + ROP$$

$$RP + NO \rightarrow NO_2$$

$$NO_2 + h \nu \rightarrow NO + O_3$$
$$NO + O_3 \rightarrow NO_2$$

$$RP + NO_2 \rightarrow SGN$$

 $RP + NO_2 \rightarrow SNGN$

ROP- Reactive organic products

RP- Radical Products

SGN- Stable gaseous nitrogen products

SNGN- Stable nongaseous nitrogen products