Chlorine and anhydrous ammonia concentrations observed and simulated in the Jack Rabbit field experiment, for releases of 1 or 2 tons in a 30 to 60 second period

Steven Hanna (HC)¹ and Joseph Chang (HSSAI),

¹Hanna Consultants, <u>hannaconsult@roadrunner.com</u>

2013 HARMO15 Conference Madrid, Spain, May 6-9, 2013 Research Sponsored by US DHS/TSA

Objectives

- Describe preparation of QA/QC'd data archive for all ten Jack Rabbit Trials (chlorine and anhydrous ammonia)
- Further confirm Briggs (1990) formulas for cloud hold-up in depression
- Show plots of C(x) for three sampler types

Release Basin: d = 50 m, h = 2 m

- Release valve is 2 m above ground
- 1 or 2 tons of pressurized liquefied gas in tank
- Two phase jet directed downwards
- Tank empties in 30-60 sec

Trial 2-PC 12 sec after release

Trial 2-PC chlorine cloud, at 22 s after the release began. u = 0.6 m/s

Chlorine Trial 6, u = 6.2 m/s (at 50 s; not much dense gas slumping)

Examples of C(t) plots for some individual MiniRae samplers

Briggs Theory

- Assume wind, u, blowing over 2-D depression containing dense gas with g' = $g(\rho_c \rho_a)/\rho_a$
- Time scale, t_f for cloud hold up is Ag'/u³ where A is x-z area of cloud in depression
- Assume dimensionless variables V' = vg'/u³ and T = t/t_f, where v is 2-D volume flux of emissions from cloud surface
- EPA wind tunnel tests give V' = 0.06exp(-0.005t')
- We use JR observations to "calibrate" constants in formulas for JR 3-D scenario

Jack Rabbit Trial	Release date (2010)	Time when visible jet	Dt for cloud seen through1	Wind Speed u m s ⁻¹
	UTC	enus (5)	(s)	
1-PA	4/7 1400	65	235	0.3
2-PC	4/8 1345	65	655	0.6
3-RA	4/27 1315	118	162	1.3
4-RA	5/1 1420	110	70	1.4
5-RC	5/3 1320	64	176	1.6
6-RC	5/4 1340	56	1	6.2
7-RC	5/5 1405	60	always ²	1.4
8-RC	5/7 1250	69	351	1.2
9-RA	5/20 1245	40	100	1.5
10-RA	5/21 1250	40	30	3.5

¹Dt = (time when mist can be seen through) – (time when visible jet ends) ²In Trial 7-RC the cloud never was opaque

Cloud hold-up time Dt vs u⁻³

10

Example of results of "calibration"

- EPA wind tunnel tests give V' = 0.06exp(-0.05t')
- JR observations suggest that "0.05" is more likely in the range from 0.07 to 0.4
- The increase might be because JR is 3-D while Briggs theory used 2-D data
- The "0.06" constant is more difficult to refine because JR did not take sufficient downwind concentrations in height and cross-wind

Development of Concentration Data Archive

- Three types of Cl₂ and NH₃ samplers MiniRae, Jaz, and Canary, different contractors
- Basic averaging time of a few seconds
- Different thresholds varying in time
- Plotted C time series and estimated thresholds and "good" data for all samplers and trials
- Calculated C for avg times from 10 s to 30 min
- Made summary plots as on next page
- Ongoing analysis

Conclusions from C(x) plots

- Plots of C(x) "look reasonable"
- C = ax⁻² with a = 10⁸ ppm-m² provides fair overall agreement with max C (x) for 10 min avg time
- Problems with max C at large C > 10,000 ppm, where samplers "maxed out". Must remember this for future experiments with these samplers.

Preliminary Conclusions

- The analysis of ten JR trials is ongoing
- Briggs' theory of dense cloud hold-up in a depression is confirmed and scaling "constants" have been revised
- An improved QA/QC'd concentration data archive has been produced; the data plots "look good" and analysis is continuing, with comparisons with dense gas model simulations