



23 May 2013 © Crown copyright 2013 Dstl

# A Model for Buoyant Puff Dispersion in Urban Areas

S. Herring<sup>1</sup>, D. Hall<sup>2</sup> and A. Spanton<sup>2</sup> <sup>1</sup>Dstl, <sup>2</sup>Envirobods Ltd.

Contact: sjherring@dstl.gov.uk





23 May 2013 © Crown copyright 2013 Dstl



# Introduction

- The Urban Dispersion Model (UDM) was developed to satisfy an MOD requirement for prediction of toxic contaminants in urban areas from 10 m to 10 km.
- A Gaussian puff model combined with wind tunnel data approach was adopted to:
  - Provide **rapid** predictions of urban dispersion;
  - Enable a wide variety of releases to be simulated: instantaneous, continuous, static or moving.



(Hall)



23 May 2013 © Crown copyright 2013 Dstl



## Introduction

- UDM is a component of the Hazard Prediction and Assessment Capability, and has been continuously developed to handle a wider range of sources.
- A first-order buoyant puff model has now been developed.
- The model enables UDM to predict the dispersion of material with significant buoyancy resulting from:
  - The density of the material;
  - Heat input.





## **Basis of Model**

- A literature review by Hall and Spanton showed:
  - No simple model existed for predicting the buoyant rise of puffs of arbitrary size and shape;
  - There was no data from systematic experiments on buoyant puff-rise;
  - There was no data on the dispersion of buoyant puffs or plumes within or just above the urban canopy.
- They concluded a model could be developed from theory relating to atmospheric thermals in still air<sup>1</sup>.

<sup>1</sup>Developed by Csanady (1973), Turner (1973), Scorer (1978) and Fannelop (1994).





# **Model Assumptions**

- The first-order approach assumes the following:
  - There is no initial energy apart from the buoyancy;
  - The Boussinesq approximation holds;
  - The puff forms are self-similar at all heights;
  - There is no initial vertical acceleration of the puff;
  - The source of buoyancy is preserved;
  - The rate of lateral spreading is equal across both coordinates of the puff.





23 May 2013 © Crown copyright 2013 Dstl



# Puff-rise in Open Terrain

- The model predicts puff spread (σ) and vertical velocity (w).
- Puff shapes are assumed to vary linearly between the extremes of axisymmetric and line forms:

Axisymmetric puff: 
$$\frac{\sigma_x}{\sigma_y} = 1$$
, line puff:  $\frac{\sigma_x}{\sigma_y} < 0.1$  or  $\frac{\sigma_x}{\sigma_y} > 10$ 

• The puff spread is given by:

$$\frac{d\sigma}{dz} = F(\alpha) \quad \text{where } F(\alpha) \text{ depends upon the puff shape}$$





# **Puff-rise in Open Terrain**

• The buoyancy forces for axisymmetric and line thermals are  $F_0$  and  $F_L$  respectively:

$$F_0 = \frac{g}{\pi} \frac{\Delta \rho}{\rho} V$$
 and  $F_L = \frac{g}{\pi} \frac{\Delta \rho}{\rho} V$ 

where  $\rho$  is density and internal volume V depends upon puff shape.

• The vertical velocity is given by:

$$w = C \left( g \frac{\Delta \rho}{\rho_0} R \right)^{0.5}$$
 where *C* is a constant and *R* the lateral spread





## **Puff-rise in Open Terrain**

 The common form for all puffs derived by Hall and Spanton is:







# Merging Buoyant Puff-rise with Dispersion by Turbulence

• UDM merges turbulence and array dispersion components by summing in quadrature:

$$\sigma_{total}^2 = \sigma_{turbulence}^2 + \sigma_{array}^2$$

• The interaction between buoyant puff-rise and spread by turbulent dispersion is accounted for by using:

$$\sigma(t + \Delta t) = \sigma(t) + (\Delta \sigma_b^2 + \Delta \sigma_{total}^2)^{0.5}$$





#### **Example output**





23 May 2013

© Crown copyright 2013 Dstl



# **Over-lapping puffs**

- When puffs over-lap during simulations, their varying densities must be accounted for.
- Buoyancy enhancement is assumed proportional to the additional concentration of over-lapping puffs.
- Puff buoyancy is enhanced by the factor  $F(\delta)$ :

$$F(\delta) = \frac{C_{\text{total}}}{C_{\text{max}}}$$

Where  $C_{total}$  is total cumulative concentration at the puff centre, and  $C_{max}$  the concentration at the puff centre.





### Interaction with Isolated Obstacles

• Experiments on plumes by Hall *et al.* have shown that buoyant plumes will lift-off:



Neutral buoyancy

High buoyancy



23 May 2013 © Crown copyright 2013 Dstl



### Interaction with Isolated Obstacles

• Interactions are accounted for by development of the puff partitioning in UDM to incorporate buoyant puffs:

First Time Step - Wake Detrained Fraction (as Present UDM)

First Time Step - Detrained Fraction From Buoyant Rise

First Time Step - Detrained Fractions Merged and Positioned



23 May 2013 © Crown copyright 2013 Dstl



# Conclusions

- A simple first-order model has been developed for thermal plume and buoyant puff-rise:
  - Its behaviour is in accordance with observations;
  - It integrates the prediction of buoyant puff-rise with dispersion due to turbulence;
  - It accounts for changes in puff-rise velocity due to changes in puff depth and over-lapping puffs;
  - It models interactions with urban arrays and obstacles.





### **Questions?**



23 May 2013 © Crown copyright 2013 Dstl







23 May 2013 © Crown copyright 2013 Dstl